
Senior Thesis in Mathematics

Exploring Methods of
High-Dimensional Data

Analysis

Author:
Victor de Fontnouvelle

Advisor:
Dr. Vin De Silva

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

December 11, 2019

Abstract

We will explore various methods of analyzing high-dimensional data.
We’ll investigate techniques that make inferences about the underlying struc-
ture of the data, cluster the data, or reduce the dimension of the data. We’ll
explain these methods, and apply them to real-world datasets.

Contents

1 Introduction 1
1.1 Inference About the Structure of the Data 1
1.2 Clustering . 1
1.3 Dimensionality Reduction . 1

2 Review of Literature 3

3 Helmholtz Decomposition 5
3.1 Explanation of Helmholtz Decomposition 5

3.1.1 Motivation . 5
3.1.2 Intuition . 7
3.1.3 Representation of Matrices 8
3.1.4 Computation of the Gradient, Curl, and Harmonic Flows 10

3.2 Application of Helmholtz Decomposition 10

4 Cohomology Analysis 12
4.1 Explanation of Cohomology Analysis 12
4.2 Explanation of Algorithm . 15
4.3 Explanation of Circular Coordinates 18
4.4 Toy Example for Circular Coordinates 21
4.5 Application of Circular Coordinates 24

4.5.1 Background . 24
4.5.2 Small Chorale . 24
4.5.3 Medium Chorale . 25
4.5.4 Large Chorale . 26
4.5.5 Music Generation . 26
4.5.6 Limitations . 27
4.5.7 Future Work . 28

i

5 Laplacian Eigenvector Analysis 29
5.1 Explanation of Laplacian Eigenvector Analysis 29
5.2 Application of Laplacian Eigenvector Analysis 33

6 Mapper 36
6.1 Explanation of Mapper . 36
6.2 Application of Mapper . 38

7 Conclusion 41

ii

Chapter 1

Introduction

1.1 Inference About the Structure of the Data

Cohomology analysis and Helmholtz decomposition provide insight on the
structure of the data. Cohomology analysis provides a broader framework for
detecting clusters, holes, and higher-order features within the data. Helmholtz
decomposition is a specific application of cohomology analysis which seeks
to find an ordered list which best accounts for a weighted graph.

1.2 Clustering

Mapper clusters the data, by mapping clusters of points onto intervals on
the real line using a filter function, and connecting overlapping clusters.

1.3 Dimensionality Reduction

Calculating the eigenvalues of the laplacian matrix reduces the dimension
of the data. The laplacian is a symmetric matrix encoding the pairwise dis-
tances between points, normalized by row. This matrix can be thought of as a
linear operator encoding heat flows. Given an input of initial temperatures,
it outputs the changes in temperatures after one time step. Eigenvectors
corresponding to low eigenvalues thus correspond to stable temperature con-
figurations. The eigenvectors are perpendicular, and thus eigenvectors cor-
responding to slightly higher eigenvalues often capture geometric structure

1

existing in the data. Additionally, nearby points will have similar values in
the eigenvectors, and thus the eigenvectors are also a useful tool for reducing
the dimension of the data.

2

Chapter 2

Review of Literature

Papers by Gunnar Carlsson [1] and Vin de Silva [3] explain the intuition
behind cohomolgy analysis, and provides several examples. Carlsson [2] and
deSilva [3] also describe the algorithm used to compute cohomology, which
will be useful if I choose to implement it.

Curto [4] and Ulmer [5] both provide various examples of the uses of
homology analysis, both in detecting underlying structure, and in providing
fingerprints that identify different phenomena. Curto analyzes a dataset rep-
resenting connection strengths between neurons in rats responsible for spa-
tial recognition. Curto first keeps a certain proportion of edges ρ s.t. 0〈ρ〈1,
keeping those edges which are the strongest. Curto then runs cohomology
analysis on this graph to determine the Betti curve. Curto determined that
the Betti curve obtained from spatially organized neurons is different than
the Betti curve that would be obtained from neurons with random structure.
Cohomolgy analysis thus provides a method for detecting spatial neurons.
Ulmer uses cohomology analysis to evaluate two different models of social
interaction for aphids roaming in a dish. Standard measures that compare
the models to real data include angular momentum, and average distance to
closest neighbor. Ulmer found that cohomology analysis provided an equally
strong measurement for assessing model accuracy.

A paper by Jiang [6] explains the Helmholtz decomposition that con-
verts ranked data into ordinal data. It provides both the algorithm for the
decomposition, as well as three examples of its use. Jiang uses Helmholtz
decomposition to rank movies. Most users rate several movies, so each time
a user rated two movies, this introduced an edge from one movie to the
other indicating the user’s preference. Jiang used Helmholtz decomposition

3

to create an absolute index of currency values based off trading rates. Jiang
also used Helmholtz decomposition to rank websites based off of connection
strengths. Jiang found that Helmholtz decomposition performed as well as
some of the standard methods for website ranking, indicating that it is a
useful tool.

Carlsson [1] also explains the Mapper tool, and provides examples of its
use. I have already used the algorithm described in this paper to analyze
several datasets.

Singh [7] describes the intuition behind the laplacian analysis, which I
have also implemented.

4

Chapter 3

Helmholtz Decomposition

3.1 Explanation of Helmholtz Decomposition

3.1.1 Motivation

Ranking various alternatives based off of comparative data is a common
problem. Examples include ranking movies based off of user reviews, rank-
ing tennis players based off of individual match results, and ranking Google
search results. In most instances, there exists no ranking that is consistent
with every observation. Helmholtz decomposition finds the ranking that
best accounts for the observed data. Additionally, the ranking produced
by Helmholtz decomposition is composed of real-valued numbers, providing
more precise information about how close certain elements are than a simple
ordinal ranking would.

The matrix Ȳ represents all pairwise rankings, and the matrix W rep-
resents the weights of each pairwise ranking. Some examples will help to
clarify.

Imagine we would like to rank four tennis players: Ann, Bob, Carl, and
Dan. We are given the following data about match outcomes:

5

Winner Loser
Ann Bob
Ann Carl
Ann Carl
Carl Ann
Bob Carl
Bob Carl
Carl Bob
Bob Dan
Dan Bob
Carl Dan

Each match counts as one point for the winner, and negative one points
for the loser. We fill in the entries of Ȳ by averaging the outcome of the
relevant matches for each entry. For example, we set Y20, corresponding to
matches between Ann and Carl to 1+1+(−1)

3
= 0.33, because Ann beat Carl

twice and Carl beat Ann once. We fill in the entries of W by counting the
number of matches for each entry. For example, w02 = 3, as Ann and Carl
played three matches together. The full matrices Ȳ and W are as follows:

Ȳ =


0 −1 −0.33 0
1 0 −0.33 0

0.33 0.33 0 −1
0 0 1 0



w =


0 1 3 0
1 0 3 2
3 3 0 1
0 2 1 0


Now imagine we’d like to rank three movies, A, B, and C, based off the

reviews of users X, Y, and Z. Suppose the users have provided the following
ratings, on a scale of 1 to 5:

A B C
X 4 2
T 5 3 4
Z 4 4

6

We fill in Ȳ to contain the average user preference corresponding to each
entry. For example, Y12, the entry corresponding to movies B and C, has
value 2+(−1)

2
, as user X had a preference of magnitude 2 for movie B whereas

user Y had a preference of magnitude −1. We fill in W to contain the number
of users who reviewed both movies corresponding to the relevant entry. For
example, Y12 = 2 because two users reviewed both movies B and C. We thus
have

Ȳ =

 0 2 0.5
2 0 0.5

0.5 0.5 0


w =

0 1 2
1 0 2
2 2 0


More generally, we consider any skew-symmetric matrix Ȳ ∈ Mn (recall

that A ∈ Mn is skew-symmetric when AT = −A) along with a symmetric
matrix W . We would like to find a vector s ∈Mnx1 that minimizes ||grads−
Ȳ ||2,W . Note that the norm is computed with respect to the inner product
space defined by W . More precisely, 〈X, Y 〉W = Σ{i,j}∈EwijXijYij.

3.1.2 Intuition

The Hodge Decomposition Theorem provides that Ȳ can be expressed as the
sum of three orthogonal components:

1. The gradient flow G

2. The curl flow C

3. The harmonic flow H

The gradient flow G represents a comparison matrix that corresponds
directly to a vector v where each item is assigned a real value. G is the
gradient of v, thus each entry is computed as G[ij] = v[j]− v[i].

The harmonic flowH represents a ranking that is curl-free and divergence-
free. This means that any three items in H will have pairwise rankings
that are logically consistent. Specifically, H[ij] +H[jk] +H[ki] = 0,∀i, j, k.

7

Because div(H) = 0, H contains plausible values in the sense that it could
have been produced by real-world data. A harmonic flow thus indicates that
there are cycles in the graph with more than three edges, where the edge
weights don’t sum to zero.

The curl flow C is the image of curl∗, the adjoint of the curl. Nonzero
values of C thus indicate cycles of length three whose edge weights don’t sum
to zero.

The gradient flow provides the ranking that minimizes the least-squared
residual, while the harmonic and curl flows characterize the residual. Specif-
ically, Ȳ −H = G+C. A large curl flow indicates that the ordering of items
ranked closely together is unreliable, while a large harmonic flow indicates
that the ordering of items ranked further apart is unreliable. For exam-
ple, if the curl flow is large but the harmonic flow is small, this indicates
that the ranking is valid at a larger scare, but that the specific ordering of
closely-ranked alternatives isn’t very precise.

3.1.3 Representation of Matrices

It is necessary to have matrix representations of δ0 (grad), δ1 (curl), δ∗0, and
delta∗1 in order to compute the gradient, curl, and harmonic flows. Through-
out this section, f , α, and A refer to maps from edges, vertices, and triples
into R, respectively.

The gradient operator assigns values to edges based on the difference
of the values of the endpoints. Specifically, α((a, b)) = −f(a) + f(b). For
example, when the graph has four vertices and all edge weights are nonzero,
the matrix representation of the gradient is

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1



a
b
c
d

 =


ab
ac
ac
bc
bd
cd


We can verify the correctness of this matrix by examination. For example,

the first row corresponds to the edge (a, b) and thus we want α((a, b)) =
−f(a) + f(b). Indeed, the value −1 in the first column corresponds to a,
and the value +1 in the second column corresponds to b. If any of the edge

8

weights are zero, we remove the corresponding row from the gradient matrix.
For example, if W ((a, b)) = 0, we would remove the first row from the matrix
above.

The curl operator assigns values to triples based off the values of edges.
Specifically, A((a, b, c)) = α(b, c) − α(a, c) + α(a, b). For example, when
the graph has four vertices and all edge weights are nonzero, the matrix
representation of the curl is:


1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1
0 0 0 1 −1 1



ab
ac
ad
bc
bd
cd

 =


abc
abd
acd
bcd


To check correctness, we examine the triple (a, b, c). We would want to

assign this triple the value α((b, c)) − α((a, c)) + α((b, c)). We can verify
that indeed the row corresponding to edge (a, b) has values +1, −1, and +1
at the columns corresponding to the edges (b, c), (a, c), and (b, c). If any
of the edge weights are zero, we remove the corresponding column from the
matrix. If any of the triples contain an edge with zero weight, we remove the
corresponding row from the matrix.

We now compute δ∗0 and δ∗1. Let Mδ∗0
and Mδ0 denote the matrix repre-

sentations of δ∗0 and δ0, respectively. By definition of the adjoint operator,
we must have that:

〈δ0f, α〉 = 〈f, δ∗0α〉 (3.1)

δ0f and α are in C1, thus their inner product includes multiplication by edge
weights, and is computed as

∑
i,j(δ0f)ijαijWij. f and δ∗0 are in C0, thus their

inner product does not include edge weights. So in order for 3.1 to be valid,
we need δ∗0 to include multiplication by edge weights. Then multiplying the
rows of Mδ0 by the corresponding edge weights and transposing the result
will yield Mδ∗0

. Specifically, Mδ∗0
= (DMδ0)

T where D = diag(Wij) for all
nonzero edges (i, j).

Similarly, in the case of the curl operator we must have:

〈δ1α,A〉 = 〈α, δ∗1A〉 (3.2)

9

This time α and δ∗1A are in C1 while δ1α and A are in C2. Thus only the inner
product 〈α, δ∗1A〉 includes multiplication by edge weights. Then dividing the
rows of Mδ1 by the corresponding edge weights and transposing the result
will yield Mδ∗1

. Specifically, Mδ∗1
= (Mδ1D

′)T where D′ = diag(1
Wij

) for all

nonzero edges (i, j).

3.1.4 Computation of the Gradient, Curl, and Har-
monic Flows

Having defined the necessary matrix representations, we are ready to com-
pute the three flows, which we denote G, C, and H. The gradient flow is
the orthogonal projection of Y onto im(δ0). So G = δ0(δ

∗
0δ0)

+δ∗0Y , where +

denotes the Moore-Penrose pseudo-inverse.

The curl flow is the orthogonal projection on to im(δ∗1). We thus hope
to find A ∈ C2 which is the least squares solution to Y = δ∗1A. Note that
this equation is in the inner product space C1 which includes multiplication
by edge weights. To solve this equation in the standard inner product space,
it is equivalent to multiply both sides by

√
D, and solve

√
DY =

√
Dδ∗1A,

where D = diag(Wij). Then C = δ∗1A.

The harmonic flow is kerδ∗0∩kerδ1 = ker∆1 where ∆1 = δ∗1δ1 +δ0δ
∗
0. Then

D∆1 = ∆T
1D. So D1/2∆1D

−1/2 = D−1/2∆T
1D

1/2. So S = D1/2∆1D
−1/2 is

symmetric, and we can compute its pseudo-inverse. We thus have that the
matrix representation of the projection in to ker∆1 is P = D−1/2(S+S)D1/2.
So H = (I − P)Y .

3.2 Application of Helmholtz Decomposition

We apply Helmholtz decomposition to a dataset of matches from all major
professional tennis tournaments in 2017. There are 528 players and 3831
matches. Each match functions as a comparison between two players. The
entries in the Ȳ matrix are computed as the fraction of games the winner
won minus 0.5. For example, if player B won 0.7 of the games in a match
against player A, the entry at index (A, B) in Ȳ would be 0.7 − 0.5 = 0.2.
We experiment with four different weighting methods:

1. “Uniform” : All matches are weighted equally

10

2. “Sets” : A match is weighted by the number of sets played

3. “Games” : A match is weighted by the number of games played

4. “Tourney” : A match is weighted more if it is played in a later round
in the tournament. Final-round matches have a weight of 1, semifinal
matches a weight of 0.5, quarterfinal matches a weight of 0.25, and so
on.

We take a subset of the data consisting of only those matches involv-
ing the top 50 players as chosen using “uniform” weighting. We apply
Helmholtz decomposition to this smaller dataset using each of the four dif-
ferent weighting methods. We then compare the three flows for each weight-
ing method, where the flows are represented as their fraction of the whole
matrix Y, using the Frobenius norm with respect to the C1 inner product
〈A,B〉 =

∑
i,j AijBijWij. The results are as follows:

Weighting Method Gradient Curl Harmonic
Uniform 0.368911 0.630049 0.001040

Sets 0.361733 0.637242 0.001025
Games 0.351814 0.646887 0.001299

Tourney 0.424746 0.574440 0.000814

Note that all weighting methods produce similar results except for “tour-
ney,” in which case the gradient flow is higher and the curl flow lower. This
suggests that “tourney” weighting allows for the most consistent ranking of
players. This is not intuitive: we would not expect a match to be more
reflective of the payers’ true skill just because it occurs in a later round.

11

Chapter 4

Cohomology Analysis

4.1 Explanation of Cohomology Analysis

Cohomology analysis allows us to understand the structure of high-dimensional
data. For two-dimensional data, clusters and holes are very easy to spot with
the human eye. However, as the number of dimensions grows large, clusters
and holes are impossible to visualize, and are often lost when common di-
mension reduction techniques such as Principle Components Analysis are
applied. Cohomology analysis provides a method to detect such features
without losing any information.

It works as follows: we start off with a parameter ε = 0. We gradually
increase it, connecting any two points whose distance is less than ε (using
whatever distance metric the user has provided). Consider this example:

Dataset of Points After Connecting

We also connect sets of points, where the set is any size. For example,
a set of two points is a line, three points is a triangle, and four points is
a tetrahedron. These sets of connected points are called simplices, and the
set of all simplices for a given value of ε is called a simplicial complex. An
n-simplex is a simplex containing n+ 1 points.

12

There are two common types of simplicial complexes:

• Cech complex: connect a set of points P = {p1, .., pn} whenever ∩ni=1Bε(pi) 6=
∅.

• Vietoris-Rips (Rips) Complex: Connect a set of points p = {p1, ..., pn}
whenever Bε(pi)∩Bε(pj) 6= ∅∀i, j ∈ [1, n]. Informally, we conenct a set
of points whenever their pairwise distances are less than ε.

In general, given a dataset of points P = {p1, .., pn}, a simplicial complex
S = {s1, .., sm} is a collection of simplices, where each simplex si is a subset
of sjustified, and where all subsets of sjustified are also included in S.

We next consider the boundary operator δn. We are given a subset of
faces Q = {f1, .., fm} along with arbitrary values V = {v1, .., vm}. Each face
fi = {pi1 , .., pin} is a subset of P of size n. If there exists a simplex S of
size n+ 1, where all subsets of size n correspond to faces, then the boundary
operator evaluates the simplex of size n+ 1. If there is no such simplex, the
boundary operator is zero.

The boundary of a simplex s = {p1, .., pn} is computed as

Σn
i=1(−1)i−1value({p1, ..., pi−1, pi+1, pn})

where value(P) is the value of the face whose set of points is P . An example
will help clarify the concept of the boundary operator. Suppose that we have
the following simplicial complex:

Let Q = {{c}, {d}, {e}}. Then Q contains the 1-simplex {c, d}, thus
δ0(Q) = (−1)0value({c}) + (−1)1value({d}) = v(c)− v(d) = 2− 3 = −1.

Let Q′ = {{a, b}, {a, c}, {b, c}}, and v = {1, 2, 3}. Then Q′ contains the
2-simplex {a, b, c}, so δ1(Q

′) = value({a, b})−value({a, c})+value({b, c}) =
1− 2 + 3 = 2.

13

n-cocycles are elements of ker(δn). They correspond to values that are
“consistent” with faces in the next dimension. n-coboundaries are values
derived from the previous dimension. The coboundaries will thus always be
“consistent,” and so are a subset of the coboundaries.

Bn commonly refers to the set of n-coboundaries, Zn to the set of n-
cocycles, and Cn to all other sets of values that are neither coboundaries nor
cocycles. This map is a helpful visualization:

As we increase ε, the number of cocycles will change. In the next section
we’ll describe an algorithm for keeping track of the cocycles. For each cocycle,
we can construct an interval [ε1, ε2], where ε1 is the value of ε when the
cocycle was created, and ε2 is the value of ε when the cocycle was destroyed.
Persistent cocycles have a large value for ε2− ε1. We can plot all cocycles to
visualize which ones are persistent. For example, if ε ranges from 0 to 1, we
might get the plot:

By setting an arbitrary threshold for ε2− ε1, we can count the number of
“significant” n-cocycles. In this case, we set the threshold to 0.75, and get
2 significant n-cocycles. In general, the number of significant n-cocycles is
called the nth Betti number. Consider the example of a torus:

14

It has one connected component, thus its 0th Betti number is 1. It has
two holes (in red), so its 1st Betti number is 2. It has one cavity (the interior
of the torus), thus its 2nd Betti number is 1. If we were to sample points
from the torus, run our algorithm, and choose appropriate cutoffs for ε2− ε1,
we would expect to see exactly these results.

4.2 Explanation of Algorithm

The inputs to our algorithm are:

1. s1, s2...sn: A list of simplices in the order that they are added

2. t1, t2...tn: The time at which each simplex arrived

Our algorithm will output a list of all cocycles that existed, along with
the times at which they were created and destroyed. Recall that cocycles
which persist for a long time indicate important features of the data.

The algorithm maintains the following data at all times:

1. I: A list of the indices of live cocycles

2. C: A list of all cocycles, where each cocycle includes the value of each
simplex of equal dimension to the cocycle.

3. T : The time of creation and destruction for each cocycle

The algorithm works as follows: for each i ∈ [1, n], we extend all live
cocycles in C with dimension equal to si by assigning si a value of 0. Next,
we compute the coboundary of each cocycle. There are two cases:

15

1. If all coboundaries are 0, we add a new cocycle ci to C with a value of
1 for si and 0 for all other simplices of the same dimension as si. We
add i to I, and set T [i][0] = ti, recording the time of creation of ci.

2. Some element of a coboundary cx is nonzero. In this case we remove
from C the last cocycle cx with a nonzero coboundary. We also remove x
from I. We adjust all other live cocycles cy with a nonzero coboundary

by setting cy = cy − by
bx
cx where by and bx are the coboundaries of cy

and cx, respectively.

Here is a simple example of the algorithm running. For clarity, we only
include the live cocycles in C. Note that the actual algorithm would want to
store all cocycles, so that upon termination it can describe all cocycles and
their associated time of creation and destruction.

i Current Simplices Data Updates

0
I = {}
C = []

1

C Extension: []
Coboundaries: []

New Data
I = {1}
C = [[a : 1]]

2

C Extension: [[a : 1, b : 0]]
Coboundaries: [[]]

New Data
I = {1, 2}
C = [[a : 1, b : 0],

[a : 0, b : 1]]

16

3

C Extension: [[a : 1, b : 0],
[a : 0, b : 1]]

Coboundaries: [[ab : −1]
[ab : 1]]

New Data
I = {2}
C = [[a : 1, b : 1]]

4

C Extension: [[a : 1, b : 1, c : 0]]
Coboundaries: [[ab : 0]]

New Data
I = {1, 4}
C = [[a : 1, b : 1, c : 0],

[a : 0, b : 0, c : 1]]

5

C Extension: [[a : 1, b : 1, c : 0],
[a : 0, b : 0, c : 1]]

Coboundaries: [[ab : 0, ac : −1]
[ab : 0, ac : 1]]

New Data
I = {1}
C = [[a : 1, b : 1, c : 1]]

17

6

C Extension: [[a : 1, b : 1, c : 1]]
Coboundaries: [[ab : 0, ab : 0, bc : 0]]

New Data
I = {1, 6}
C = [[a : 1, b : 1, c : 1],

[ab : 0, ac : 0, bc : 1]]

7

C Extension: [[a : 1, b : 1, c : 1],
[ab : 0, ac : 0, bc : 1]]

Coboundaries: [[ab : 0, ac : 0, bc : 0]
[abc : 1]]

New Data
I = {1}
C = [[a : 1, b : 1, c : 1]]

The algorithm will output the time of creation and destruction for each
cocycle:

Index Cocycle Time Created Time Destroyed
1 [a: 1, b: 1, c: 1] t1 (none)
2 [a: 0, b: 1] t2 t3
4 [a: 0, b: 0, c: 1] t4 t5
6 [ab: 0, ac: 0, bc: 1] t6 t7

4.3 Explanation of Circular Coordinates

In may instances, our data has one or more major holes that we’d like to
capture. Consider the following data:

18

Imagine we choose the following 1-cocycle (all unlabeled edges have the
value zero):

We can verify that the boundary of both triangles involving nonzero edges
are zero. Thus all boundaries are zero, so we have a cocycle.

Intuitively, this cocycle will capture the winding number of a path: how
many times it travels counterclockwise around the circle. For example, if
the path travels clockwise but counterclockwise once, then it has a winding
number of 2− 1 = 1.

We would like a cocycle that does the same job, but minimizes the L2
norm, which takes into account the squares of all edges. Formally, the L2
norm is

√
Σi,j∈edgesd(pi, pj)2. In this case, the L2 norm is

√
(12 + 12 + 12) =√

3
Minimizing the L2 norm gives the following cocycle:

19

We can now assign a value to each vertex. We arbitrarily choose some
vertex to be 0, and then increment by edge values as we travel around the
circle. This gives us the following result:

Notice that we go from 7
8

back to 0, and also from 15
16

back to 0. This
is because we are operating in R mod 1. To aid visualization, we color each
vertex with the color corresponding to its value on this RGB strip:

0 1

The result is as follows:

20

Indeed, we see that each vertex has a value corresponding to its position
around the circle.

4.4 Toy Example for Circular Coordinates

We apply circular coordinate analysis to detect a hole in a normal distribu-
tion. To create our data, we define a roughly normal distribution with a hole
in the center, and sample points on a two-dimensional plane according to
this normal distribution:

21

Normal Distribution Sampled Points

Using the standard distance metric, we compute the persistence diagram
as well as the circular coordinates for the most persistent cocycle:

Persistence Diagram Circular Coordinates

Indeed, the 1-cocycle with ε2 − ε1 have captured a hole. However, we
see that the hole it captured is slightly off-centered: it is to the top-left of
the “actual” center of the hole. This was because the largest space with no

22

points happened to not be in the center. This metric is thus subject to too
much variance.

In order to capture the true center of the hole, we need to reduce variance
by selecting a new metric. The metric we use is

d(pi, pj) =
1

min({density(pi), density(pj)})

where density(pi) is the number of points within a radius of 0.5 of pi.
If we stopped here, our algorithm would connect all pairs of points. To

prevent this, we set a limit of 0.8, so that points whose euclidean distance
exceeds 0.8 are never connected.

In effect, this metric should cause our algorithm to first connect points in
high-density regions, and only later to connect points in low-density regions.

The results are as follows. We plot the persistence diagram, as well as
the circular coordinates for the most persistent cocycle.

Persistence Diagram Circular Coordinates

Indeed, the 1-cocycle with maximal ε2 − ε1 captures the hole. It seems
to be an improvement over the usual metric, as the center of the cocycle
corresponds to the actual center of the hole.

23

4.5 Application of Circular Coordinates

4.5.1 Background

I applied the circular coordinates algorithm to a dataset of Bach chorales.
Each chorale is represented as a sequence of chords, where each chord is an
array of notes. For example, the C chord corresponds to:

C C# D D# E F F# G G# A A# B
[1 0 0 0 1 0 0 1 0 0 0 0]

I connect two chords X and Y whenever either X follows Y or Y follows
X. The distance between X and Y is the inverse of the number of connections
between them. This ensures that chords which follow each other often are
“closer,” and thus treated as stronger edges by our algorithm.

For example, suppose one chorale was this sequence of chords: [A, B, C,
D, C, E, F, A, E, F, A, F]. Then we’d have the graph:

Notice, for example, that the closest two nodes (in terms of edge weight)
are A and F. They were connected three times, and thus the weight of the
edge between them is 1

3
.

Our dataset contained 162 chorales. I’ll describe the results obtained from
applying our circular coordinates algorithm to three chorales: one short, one
medium, and one long:

4.5.2 Small Chorale

This chorale has 49 chords, with 22 distinct chords (the other 27 being re-
peats). The persistence diagram indicates that there is one hole. We see that
the hole corresponds to a sequence of nine chords.

24

Persistence Diagram Circular Coordinates

4.5.3 Medium Chorale

This chorale had 82 chords, 27 of them distinct. We plot the persistence dia-
gram, and the circular coordinates for the circular coordinates corresponding
to the most persistent hole:

Persistence Diagram Circular Coordinates

We notice that the algorithm picked up on a sequence of four chords:

25

4.5.4 Large Chorale

This chorale had 162 chords, 36 of of them distinct. We plot the persistence
diagram, and the circular coordinates for the circular coordinates correspond-
ing to the most persistent hole:

Persistence Diagram Circular Coordinates

It appears that the algorithm found a loop of length 9. Notice that
chords that are part of this loop sometimes link to other chords that are
not their immediate neighbors. This didn’t happen for the shorter chorales.
The fact that this happened means that each chord in the loop had more
connections to each of its neighbors in the loop, and thus stronger edges.
So our algorithm was able to detect the loop despite the noise caused by
additional edges cutting across the loop.

4.5.5 Music Generation

We hoped to use this circular coordinate information to generate songs. We
hoped that these generated songs would sound better than those näıvely
generated by a simple bigram model.

In a standard bigram model, the mass given to each neighbor is simply
the edge weight. If we have the graph:

26

then X will transition to B with probability 1
6
, to C with probability

2
6

= 1
3
, and to D with probability 3

6
= 1

2
. We denote that mx(y) = wxy.

To incorporate the circular coordinates, we instead use the mass function:

mx(y) = wxy(1− L) + sigmoid(wxy) ∗ L ∗ (Dxy + 0.5)

Dxy is the difference between circular coordinate values for x and y.
Adding 0.5 makes this range from between 0 and 1. We hoped that this
would encourage the song to progress around the circle.

“sigmoid” refers to a variant of the standard sigmoid function. Its effect
was to make a value of 0 when wxy = 0, and value 1 when wxy > 0. This
makes it impossible to make transitions not seen in the data.

Setting L = 0 makes our mass function the same as in the bigram model.
Setting L = 1 makes the mass function only care about circular coordinates,
diregarding edge weights. We decided that setting it somewhere in between
would five the best results. Unfortunately, it didn’t seem that the model
that incorporated circular coordinates produced significantly better-sounding
music than the bigram model did. We next discuss a few reasons for why
this could be the case.

4.5.6 Limitations

We did not have information about what key each chord was in. It is thus
likely that key changes occurred during the chorales, which we weren’t able
to account for.

Additionally, the circular coordinates algorithm doesn’t account for which
direction the transition between chords goes. For example, suppose a song
has many transitions from the G chord to the C chord, but never vice versa.
Our algorithm would juts make a strong edge between G and C, and thus be
just as likely to make a transition from G to C as from C to G.

27

4.5.7 Future Work

Annotating the chords with key information and only applying the algorithm
to sections of a song that are in the same key may produce better results

28

Chapter 5

Laplacian Eigenvector Analysis

5.1 Explanation of Laplacian Eigenvector Anal-

ysis

Intuitively, the Laplacian matrix L is used to calculate the net outward flow
at each point in a graph. Given a vector v of node values, Mv gives the
outward flow. Thus the eigenvectors of the laplacian matrix corresponding
to small eigenvalues represent stable flows. This means that nodes close
to one another in the graph must have similar corresponding values in the
eigenvector. Furthermore, the eigenvectors of L are orthogonal, thus the
first few eigenvectors of L provide an effective way to reduce the dimension
of data.

Consider the following graph:

Suppose that we have the following function that assigns values to each
node A,B,C,D, and E, in that order:

29

f =


1
3
1
2
1


Let the matrix K encode the edges, with one column for each edge. Be-

cause this is a directed graph, within each column the entry for the source
node of an edge is assigned value −1 while the destination is assigned the
value 1. For undirected graphs, both values would be 1.

K =


1 0 0 0
−1 1 1 0
0 −1 0 0
0 0 −1 1
0 0 0 −1


The gradient in this case denotes the flow along each edge. For example,

grad(e1) = f(A)− f(B). So we can represent the gradient as follows:

grad(f) = KTf =


1 −1 0 0 0
0 1 −1 0 0
0 1 0 −1 0
0 0 0 1 −1




1
3
1
2
1

 =


−2
2
1
1


Also note that Kv will calculate the net outward flow at each point for

any given vector field v. Recall that the divergence of a vector field is the
net outward flux at each point. For a graph, the divergence denotes the net
outward gradient flow at each point. Calculating the net outward flow for the
vector field corresponding to the gradient will give us the graph’s divergence.
For example, div(B) = −1∗grad(e1)+1∗grad(e2)+1∗grad(e3) = 2+2+1 = 5.
In general, we have:

div(n) = K ∗ grad =


1 0 0 0
−1 1 1 0
0 −1 0 0
0 0 −1 1
0 0 0 −1



−2
2
1
1

 =


−2
5
−2
0
1



30

Substituting in the formula for the gradient, we have div = KKTf . The
matrix L = KKT is called the Laplacian. In this case, we have

L = KKT =


1 0 0 0
−1 1 1 0
0 −1 0 0
0 0 −1 1
0 0 0 −1




1 −1 0 0 0
0 1 −1 0 0
0 1 0 −1 0
0 0 0 1 −1

 =


1 −1 0 0 0
−1 3 −1 −1 0
0 −1 1 0 0
0 −1 0 2 −1
0 0 0 −1 1


Note that the value of Lii will simply be the number of edges adjacent

to node i. This because we are effectively taking the inner product of one
row with itself, and since −12 = 12 = 1 this is equivalent to counting the
number of nonzero entries in the row. For Lij with i 6= j, we are taking the
inner product of two different rows. The value at each index of the row will
be −1 if there is an edge between nodes i and j and 0 otherwise. This is
because the only time that two rows of K (equivalent to one row of K and
one column of KT share a nonzero entry in the same column is when there
is an edge between the two nodes corresponding to these rows.

Let D be the diagonal matrix with the degrees of each node on the diag-
onal. In this case,

D =


1 0 0 0 0
0 3 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1


Let A be the adjacency matrix. The value of Aij will be 1 if there is an

edge between nodes i and j and 0 otherwise. In this case, we have

A =


0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0


Note that L = D −A. In this example, all edges had the same weight of

1, but in other cases the edge weights can vary. Thus in general, the degree

31

of a node is not the number of adjacent edges, but rather the sum of the
weights of its adjacent edges.

We would like to incorporate some idea of normalization into the Lapla-
cian. For example, some nodes may have much higher degrees than others.
We would like the entries in those rows to still have similar values. We’d
thus like to divide each cell by the degree of the two nodes involved. This
is the intuition behind the graph laplacian, where we divide each cell by Lij
by

√
degree(i) ∗ degree(j), the geometric mean of the degrees of the nodes i

and j. We can accomplish this as follows:

Lsym = D−
1
2 (D − A)D−

1
2

= D−
1
2DD−

1
2 −D−

1
2AD−

1
2

= I −D−
1
2AD−

1
2 (Because D is diagonal)

We then compute the eigenvectors v0...vn−1 and eigenvalues e0...en−1 of
Lsym. Intuitively, the eigenvectors corresponding to the smallest eigenvalues
represent states without much flow between nodes. Thus all connected nodes
will have similar corresponding values in the eigenvector.

Also note that because L and Lsym are symmetric, then the eigenvalues
are orthogonal. We can verify that this is the case: choose two distinct
eigenvectors x and y with distinct eigenvalues λ and µ:

λ〈x, y〉 = 〈λx, y〉 = 〈Lx, y〉 = 〈x, LTy〉 = 〈x, Ly〉 = 〈x, µy〉 = µ〈x, y〉

Thus (λ− µ)〈x, y〉 = 0. But λ 6= µ, thus x ⊥ y.

Because the eigenvectors are orthogonal, the information they provide is
not redundant. Thus the first few eigenvectors of Lsym provides an effective
way to reduce the dimension of the data. Note that for L, 1 is an eigenvector
with eigenvalue 0. Similarly, the first eigenvector and eigenvalue are not
informative for Lsym. We thus throw out very first eigenvector, and only
consider the first few after that one.

Also note that this method of dimension reduction only preserves local
structure. Points that are connected to each other will have similar values,
but points that are not connected may not - even if they are very close by.
Consider the following example:

32

We see that points that were initially close by, but were not connected,
can end up with very different values. Thus while the first few eigenvectors of
the symmetric normalized Laplacian provide information about the structure
of the data, it is important to remember that this structure is defined in terms
of connected nodes rather than physical distance.

5.2 Application of Laplacian Eigenvector Anal-

ysis

We first calculate the eigenvectors of the laplacian of points sampled from a
triangle. Here is the triangle, colored by the 2nd and 3rd eigenvectors:

2nd Eigenvector 3rd Eigenvector

We notice that the 2nd eigenvector captures left-to-right variation: points
in the bottom right have different values from those in the top left. Taken

33

together, these two eigenvectors will successfully indicate what part of the
triangle a point is located in.

We now calculate the eigenvectors of the laplacian for connected compo-
nents We plot the 2nd, 3rd, 4th, and 5th eigenvectors as before:

2nd Eigenvector 3rd Eigenvector

4th Eigenvector 5th Eigenvector

Notice that the 2nd eigenvector, for example, captures left-to-right vari-
ation, whereas the 4th and 5th eigenvectors single out the different quad-
rants. Taken together, these eigenvectors will also provide us with informa-
tion about where a point is located.

Because these examples are in low dimensions, we can tell where a point is
without the aid of the eigenvectors of the laplacian But in higher dimensions

34

where our vision fails, the information provided by these eigenvectors can be
very useful.

We now calculate the eigenvectors of the laplacian for a dataset of wine
quality. There are 11 input variables, such as “pH,” “density,” “fixed acidity,”
and so forth. The output variable is a quality score ranging form 1 to 10, as
judged by self-professed experts.

We plot the 2nd and 3rd eigenvectors of the laplacian, coloring each point
with the judged quality. Darker colors like purple indicate higher quality.
The results are as follows:

2nd Eigenvector vs. 3rd Eigenvector

We note that there is not much interesting structure in the data. Only
the 2nd eigenvector captured some variance, as evidenced by the fact that
the points are spread out mainly along the axis corresponding to the 2nd

eigenvector. The 3rd did not contribute much. Further, there doesn’t appear
to be a strong pattern in terms of wine quality. There do appear to be more
lower-quality wines toward the right side of the plot, but there are also many
higher quality wines there as well.

One reason that there the eigenvectors of the laplacian don’t capture a
strong pattern may be that there is in fact no strong pattern. Wine tasting
is a notoriously unreliable art, as many self-professed experts can’t tell the
difference between a cheap wine and a more expensive one in a blind taste
test.

35

Chapter 6

Mapper

6.1 Explanation of Mapper

In Topology and Data, Gunnar Carlsson introduces Mapper, a way to visu-
alize the structure of high-dimensional data [1]. Mapper is insensitive to the
metric used, and allows the user to visualize the structure at various levels
of resolution, thereby detecting features that persist over time.
The user starts off with a set of points X, together with a metrix d. The
Mapper algorithm works in five stages:

1: Filter. The user chooses a reference metric space (Z, dz) and a filter
function ρ : X → Z. We call this function a filter.

The image of ρ will be used for clustering, so we would like dz(ρ(x), ρ(x′))
to be small when d(x, x′) is small. For example, when z is R, the graph
laplacian is a good choice, where our graph connects all pairs of points (x, x′)
in X with edge weight inversely proportional to d(x, x′). As discussed last
chapter, the graph laplacian assigns a similar value to nearby points that are
connected.

2: Cover. The user selects a covering U of Z. U is a set {U1, ...,Un} where
∀x ∈ X, x ∈ ∪α∈[1,n]Uα.

Intuitively, this is a set of overlapping intervals that capture all points in
X. The final clustering will depend on the overlap between elements of the
covering to make connections between clusters. Thus the user should ensure
that there is adequate overlap.

36

The user can choose coverings with smaller intervals in order to get a more
detailed view of the structure, or larger intervals in order to get a coarser
view of the structure. The user can also make small modifications to the
size of the intervals to see which features persist across different scales. The
persistent features are likely the most important.

3: Group. ∀α ∈ [1, n], we construct the group Xα = {x ∈ X|ρ(x) ∈ Uα}.
Intuitively, this corresponds to the points in X that fall into each element of
our covering.

4: Cluster The user selects some small ε ∈ R. Within each group Xα, we
apply single-linkage clustering, where we connect any two points x and x′ if
d(x, x′) < ε.

The user should ensure that ε is not so small that it splits a legitimate
cluster in two, and not so large that it merges two legitimate clusters into
one (where “legitimate clusters” are the clusters that we think the algorithm
should find).

We now understand the benefit Mapper provides by being metric insen-
sitive. Many modern datasets have a metric that encodes a rough notion of
similarity. Mapper only uses this metric to check if two points are within
some threshold distance of each other, thus it will provide the same result
under all continuous transformations of the distance metric, provided that
the user adjusts ε appropriately, It is also fairly insensitive to minor changes
in the metric, as all that Mapper cares about is whether the threshold has
been met or not.

We now have a set of clusters parametrized by (α, c), where α ∈ [1, n]
and c is one of the distinct clusters found in xα.

5: Connect. We construct a simplicial complex with vertex set (α, c),
creating a k-simplex {(α0, c0), ..., (αk, ck)} when all those clusters share a
point. Intuitively, we connect overlapping clusters.

Summary: The user has a set of points X along with a metric d. They
choose a filter ρ, a covering U , and a threshold ε. Given this data and
these parameters, Mapper clusters the data, allowing the user to visualize its
structure.

Simple Example: To illustrate how Mapper works, we consider the fol-
lowing example.

37

6.2 Application of Mapper

I applied Mapper to a dataset of 1567 universities. There were nine features:

• Graduation rate

• Percent of first-time undergraduate students given financial aid

• Average amount of aid per student given by the government

• Total price for in-state students living on campus

• Total price for out-of-state students living on campus

• Admissions rate

• Yield (percent of admitted students who attend)

• Number of instructional faculty

• Number of service staff

I used the first eigenvector of the Laplacian as the filter function. I chose
a window size and stride length such that there were 43 non-empty windows.
The results are as follows:

38

We see that Mapper did not find much interesting structure. In each
window, almost all of the points in that window got grouped into one clus-
ter. I reduced the threshold for linkage in the single-linkage clustering by
two-thirds, in an attempt to split apart the larger clusters, and find more in-
teresting structure. This did not work. In each window, several small points
split off from the large cluster, but the large cluster was preserved:

The fact that all points get grouped into one cluster indicates that within
each window, all data points were pretty close. Mapper suggests that the
structure of this data is indeed linear.

39

It did appear that different windows contained different categories of col-
leges. For example, 16 of the 27 colleges in the cluster highlighted in green
were religious colleges. This is far fewer than the average. I was not able
to count all religious colleges in the dataset, but internet research indicates
that about twenty percent of colleges have a religious affiliation. The cluster
highlighted in red contained fairly prestigious colleges:

• Haverford College

• Brown University

• Bates College

• Carnegie Mellon University

• Trinity College

• Wake Forest University

• Rhode Island School of Design

• Skidmore College

Although the clusters do seem to be informative, note that this information
was captured by the eigenvectors of the laplacian alone, not by Mapper as
whole

40

Chapter 7

Conclusion

As computers have become ubiquitous, we’ve collected data on all sorts of
phenomena including schools, social media, healthcare, and genetics. These
datasets have many features, and thus high-dimensional datasets are very
common. Being able to both visualize them and detect patterns in them is
very important. In this paper, we’ve explored several methods to do both of
those things. Using Mapper and calculating the eigenvectors of the Lapla-
cian are both useful tools for data visualization. Helmholtz decomposition
and cohomology analysis are both useful methods for detecting patterns in
the data. We introduced the novel idea of applying cohomology analysis to
detect patterns in music, but there are a huge variety of applications that
are currently unexplored. Future work could continue to find new domains
where these tools are applicable, as well as develop improved tools for data
analysis.

41

Bibliography

[1] Carlsson, Gunnar. “Topology and data.” Bulletin of the American Math-
ematical Society 46.2 (2009): 255-308.

[2] Zomorodian, Afra, and Gunnar Carlsson. “Computing persistent homol-
ogy.” Discrete & Computational Geometry 33.2 (2005): 249-274.

[3] De Silva, Vin, Dmitriy Morozov, and Mikael Vejdemo-Johansson. “Per-
sistent cohomology and circular coordinates.” Discrete & Computational
Geometry 45.4 (2011): 737-759.

[4] Giusti, Chad, et al. “Clique topology reveals intrinsic geometric structure
in neural correlations.” Proceedings of the National Academy of Sciences
112.44 (2015): 13455-13460.

[5] Ulmer, M., Lori Ziegelmeier, and Chad M. Topaz. “Assessing biological
models using topological data analysis.” arXiv preprint arXiv:1811.04827
(2018).

[6] Jiang, Xiaoye, et al. “Statistical ranking and combinatorial Hodge the-
ory.” Mathematical Programming 127.1 (2011): 203-244.

[7] Singh, Gurjeet, Facundo Mmoli, and Gunnar E. Carlsson. “Topological
methods for the analysis of high dimensional data sets and 3d object
recognition.” SPBG. 2007.

42

	Introduction
	Inference About the Structure of the Data
	Clustering
	Dimensionality Reduction

	Review of Literature
	Helmholtz Decomposition
	Explanation of Helmholtz Decomposition
	Motivation
	Intuition
	Representation of Matrices
	Computation of the Gradient, Curl, and Harmonic Flows

	Application of Helmholtz Decomposition

	Cohomology Analysis
	Explanation of Cohomology Analysis
	Explanation of Algorithm
	Explanation of Circular Coordinates
	Toy Example for Circular Coordinates
	Application of Circular Coordinates
	Background
	Small Chorale
	Medium Chorale
	Large Chorale
	Music Generation
	Limitations
	Future Work

	Laplacian Eigenvector Analysis
	Explanation of Laplacian Eigenvector Analysis
	Application of Laplacian Eigenvector Analysis

	Mapper
	Explanation of Mapper
	Application of Mapper

	Conclusion

