Ranking Alternatives From Comparison Data

Victor de Fontnouvelle
Advisor: Prof. Vin de Silva

Pomona College

December 12, 2019

Ranking Alternatives

Goal: use voter data to rank the best alternatives Voters: indicate a preference for certain alternatives

Examples:

Goal	Alternatives	Voters
Tennis Player Standings	Players	Matches
Rank Netflix Shows	Shows	Users
Web Ranking	Webpages	Links

Example: Tennis Matches

Winner	Loser
Anne	Bob
Anne	Carl
Anne	Carl
Anne	Carl
Bob	Carl
Bob	Carl
Carl	Bob
Bob	Dan
Dan	Bob
Carl	Dan

Example: Tennis Matches

Winner	Loser
Anne	Bob
Anne	Carl
Anne	Carl
Anne	Carl
Bob	Carl
Bob	Carl
Carl	Bob
Bob	Dan
Dan	Bob
Carl	Dan

$$
\begin{array}{r}
Y=\begin{array}{c}
A \\
A \\
\text { A }
\end{array} \begin{array}{c}
C \\
B \\
C \\
D
\end{array}\left[\begin{array}{cccc}
0 & -1 & -3 & 0 \\
1 & 0 & -1 & 0 \\
3 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
w=\left[\begin{array}{llll}
\text { A } & \text { B } & C & D \\
0 & 1 & 3 & 0 \\
1 & 0 & 3 & 2 \\
3 & 3 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right]
\end{array}
$$

$$
\bar{Y}=\left[\begin{array}{cccc}
A & B & C & D \\
0 & -1 & -1 & 0 \\
1 & 0 & -\frac{1}{3} & 0 \\
1 & \frac{1}{3} & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Making a Guess

Guess a Rough Ranking:

$$
A B C D
$$

$s=\left[\begin{array}{llll}3 & 1 & 0 & 1\end{array}\right]^{T}$
Expected results:

$$
\text { match }_{a b}=s_{b}-s_{a}=1-3=-2
$$

Can think of as the gradient, because it captures the difference

$$
\operatorname{grad}(s)=\left[\begin{array}{cccc}
0 & -2 & -3 & -2 \\
2 & 0 & -1 & 0 \\
3 & 1 & 0 & 1 \\
2 & 0 & -1 & 0
\end{array}\right]
$$

How Good Was Our Guess?

$$
\begin{array}{lc}
\bar{Y} & =\left[\begin{array}{cccc}
A & \text { B } & \text { C } & \text { A } \\
0 & -1 & -1 & 0 \\
1 & 0 & -\frac{1}{3} & 0 \\
1 & \frac{1}{3} & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
\operatorname{grad}(s)=\left[\begin{array}{cccc}
0 & 1 & 2 & 2 \\
-1 & 0 & \frac{2}{3} & 0 \\
-2 & -\frac{2}{3} & 0 & -2 \\
-2 & 0 & 2 & 0
\end{array}\right] \\
E=\bar{Y}-\operatorname{grad}(s)=\left[\begin{array}{cccc}
0 & 1 & 2 & 2 \\
-1 & 0 & \frac{2}{3} & 0 \\
-2 & -\frac{2}{3} & 0 & -2 \\
-2 & 0 & 2 & 0
\end{array}\right]
\end{array}
$$

Let's take the Frobenius norm! $\|E\|_{2}=\left(\Sigma_{i, j} E_{i j}^{2}\right)^{0.5}$

How Good Was Our Guess?

$$
\begin{aligned}
& \text { A B C D } \\
& \text { A B C D } \\
& \bar{Y}=\left[\begin{array}{cccc}
0 & -1 & -1 & 0 \\
1 & 0 & -\frac{1}{3} & 0 \\
1 & \frac{1}{3} & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \operatorname{grad}(s)=\left[\begin{array}{cccc}
0 & 1 & 2 & 2 \\
-1 & 0 & \frac{2}{3} & 0 \\
-2 & -\frac{2}{3} & 0 & -2 \\
-2 & 0 & 2 & 0
\end{array}\right] \\
& E=\bar{Y}-\operatorname{grad}(s)=\left[\begin{array}{cccc}
0 & 1 & 2 & 2 \\
-1 & 0 & \frac{2}{3} & 0 \\
-2 & -\frac{2}{3} & 0 & -2 \\
-2 & 0 & 2 & 0
\end{array}\right]
\end{aligned}
$$

Let's take the Frobenius norm! \|E \| $\|_{2}=\left(\Sigma_{i, j} E_{i j}^{2}\right)^{0.5}$
... but we need to account for the weight

$$
w=\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 0 & 3 & 2 \\
3 & 3 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right] \quad\|E\|_{2, w}=\left(\sum_{i, j} w_{i j} E_{i j}^{2}\right)^{0.5} \approx 8.37
$$

Quantifying the Error

Two Measures:
(1) Error: $\|\bar{Y}-\operatorname{grad}(s)\|_{2, W}$
(2) Relative Error: $\frac{\|\bar{Y}-\operatorname{grad}(s)\|_{2, w}}{\|\bar{Y}\|_{2, w}}$

Error	8.37
Relative Error	2.56

Computing Best Solution (Slide 1 of 3)

Want to solve for s in $\min \|\bar{Y}-\operatorname{grad}(s)\|_{2, w}$
Solution: use linear algebra!
So how do represent the gradient as a matrix?
Want: $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \rightarrow\left[\begin{array}{l}a \text { vs. } b \\ a \text { vs. } c \\ a \text { vs. } d \\ b \text { vs. } c \\ b \text { vs. } d \\ c \text { vs. } d\end{array}\right]$

$$
M_{\text {grad }}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

Computing Best Solution (Slide 2 of 3)

Computing Best Solution (Slide 2 of 3)

$$
\begin{aligned}
\bar{Y}-\operatorname{grad}(s) \perp \operatorname{im}(\operatorname{grad}) & \Leftrightarrow\langle\bar{Y}-\operatorname{grad}(s), \operatorname{grad}(x)\rangle=0 \quad \forall x \\
& \Leftrightarrow\left\langle\operatorname{grad}^{*}(\bar{Y}-\operatorname{grad}(s)), x\right\rangle=0 \quad \forall x \\
& \Leftrightarrow \operatorname{grad}^{*}(\bar{Y}-\operatorname{grad}(s))=0
\end{aligned}
$$

We solve to get: $s=\left(\operatorname{grad}^{*} \operatorname{grad}\right)^{-1} \operatorname{grad}^{*} y$

Computing Best Solution (Slide 3 of 3)

Want matrix representation for grad*
Normally, we'd have $M_{\text {grad }}=M_{\text {grad }}^{T}$.

$$
M_{\mathrm{grad}}^{T}=\left[\begin{array}{cccccc}
-1 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \leftarrow \text { multiply by }-\left[\begin{array}{c}
a b \\
a c \\
a d \\
b c \\
b d \\
c d
\end{array}\right]
$$

Computing Best Solution (Slide 3 of 3)

Want matrix representation for grad*
Normally, we'd have $M_{\text {grad }}=M_{\text {grad }}^{T}$.

$$
M_{\mathrm{grad}}^{T}=\left[\begin{array}{cccccc}
-1 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \leftarrow \text { multiply by }-\left[\begin{array}{c}
a b \\
a c \\
a d \\
b c \\
b d \\
c d
\end{array}\right]
$$

...but must acct for weighted inner product: $\langle\operatorname{grad} f, \bar{Y}\rangle_{w}=\left\langle f, \operatorname{grad}^{*} \bar{Y}\right\rangle$

$$
M_{\mathrm{grad}^{*}}=M_{\mathrm{grad}}^{T} \operatorname{diag}(w)=\left[\begin{array}{cccccc}
-1 & -3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -3 & -2 & 0 \\
0 & 3 & 0 & 3 & 0 & -1 \\
0 & 0 & 0 & 0 & 2 & 1
\end{array}\right]
$$

Finally, the Solution

$$
\begin{aligned}
& M_{\mathrm{grad}}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right] \quad M_{\mathrm{grad}^{*}}=\left[\begin{array}{cccccc}
1 & 3 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 3 & 2 & 0 \\
0 & -3 & 0 & -3 & 0 & 1 \\
0 & -3 & 0 & -3 & 0 & 1 \\
0 & 0 & 0 & 0 & -2 & -1
\end{array}\right] \\
& s=\left(\mathrm{grad}^{*} \operatorname{grad}^{-1} \operatorname{grad}^{*} \bar{Y}\right. \\
& =\left[\begin{array}{llll}
0.81 & -0.13 & -0.203 & -0.486
\end{array}\right] \\
& \text { A }
\end{aligned}
$$

How Good is the Solution?

$$
\begin{array}{rrrr}
\text { A } & \text { B } & \text { C } & \text { D } \\
{[0.81} & -0.13 & -0.203 & -0.486]
\end{array}
$$

$$
\operatorname{grad}(s)=\left[\begin{array}{cccc}
0 & -0.94 & -1.02 & -0.28 \\
0.94 & 0 & -0.08 & -0.36 \\
1.02 & 0.08 & 0 & -0.28 \\
0.28 & 0.36 & 0.28 & 0
\end{array}\right] \quad \bar{Y}=\left[\begin{array}{cccc}
0 & -1 & -1 & 0 \\
1 & 0 & -\frac{1}{3} & 0 \\
1 & \frac{1}{3} & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Measure	Formula	Guess	Solution				
Error	$\\|\bar{Y}-\operatorname{grad}(s)\\|_{2, w}$	8.37	2.95				
Relative Error	$\frac{\\|\bar{Y}-\operatorname{grad}(s)\\|_{2, w}}{\\|\bar{Y}\\|_{2, w}}$	2.56	0.90				

Ranking Real Data

Denote Rankability $=\left(\frac{\|\operatorname{grad}(s)\| 2, w}{\|Y\| \|_{2} w}\right)^{2}$

- Note: Rankability $\in[0,1]$

Ranking Real Data

Denote Rankability $=\left(\frac{\|\operatorname{grad}(s)\| 2, w}{\|Y\| 2, w}\right)^{2}$

- Note: Rankability $\in[0,1]$

1. 2017 Major Tennis Tournaments

- 453 matches, 50 players
- Not many matches for each player
- Rankability $=0.37$

Ranking Real Data

Denote Rankability $=\left(\frac{\|\operatorname{grad}(s)\|_{2, w}}{\|\bar{Y}\|_{2, w}}\right)^{2}$

- Note: Rankability $\in[0,1]$

1. 2017 Major Tennis Tournaments

- 453 matches, 50 players
- Not many matches for each player
- Rankability $=0.37$

2. Major Golf Tournaments in 2018

- 4 tournaments, 50 players
- Every tournament compares all 50 players
- So $4 *\binom{50}{2}=4900$ voters
- Rankability $=0.63$

3. 9-Round Chess Tournament

- 119 matches, 50 players
- Rankability $=0.45$

Data Where Ranking is Impossible

Winner	Loser
Anne	Bob
Bob	Carl
Carl	Anne

- This data is circular
- No ranking works

$$
\bar{Y}=\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right] \quad s=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Rankability $=\left(\frac{\|\operatorname{grad}(s)\|_{2, w}}{\|\bar{Y}\|_{2, w}}\right)^{2}=0.0$

High-Level Overview

Perfect ranking \Longrightarrow directed acyclic graph

High-Level Overview

Perfect ranking \Longrightarrow directed acyclic graph

Otherwise, there are circular flows

Two ways to think of circular flows:
(1) (Good) Like an electric current
(2) (Bad) Can't be ranked

Two Types of Flows

(1) Triangular inconsistencies and linear combinations thereof

Call these "curl flows"

Two Types of Flows

(1) Triangular inconsistencies and linear combinations thereof

Call these "curl flows"
(2) Other flows that can't be reduced to triangular inconsistencies

These correspond to "harmonic flows"

Computing the Curl Flow - An Example

Computing the Curl

$$
\begin{aligned}
\operatorname{curl}(a b c) & =a b+b c+c a \\
& =1+2+3 \\
& =6
\end{aligned}
$$

Note: $c a=-a c$, so $a b+b c+c a=a b+b c-a c$.

Computing the Curl of All Triangles

Want to compute the curl for each triangle

- $\operatorname{curl}(a b c)=a b-a c+b c$
- $\operatorname{curl}(b c d)=b c-b d+c d$

Computing the Curl of All Triangles

Want to compute the curl for each triangle

- $\operatorname{curl}(a b c)=a b-a c+b c$
- $\operatorname{curl}(b c d)=b c-b d+c d$

$$
\begin{aligned}
& \text { abc } \\
& \text { bcd }
\end{aligned}\left[\begin{array}{cccccc}
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
4 \\
-2 \\
3 \\
0 \\
2 \\
1
\end{array}\right] \begin{aligned}
& \mathrm{ab} \\
& \mathrm{ac} \\
& \mathrm{bc} \\
& \mathrm{bd} \\
& \mathrm{~cd} \\
& \mathrm{de}
\end{aligned}=\left[\begin{array}{l}
9 \\
5
\end{array}\right]
$$

Denote the first matrix $M_{\text {curl }}$, and the second matrix \bar{V}

What is $M_{\text {curl }^{*}}$?
First guess: $M_{\text {curl }}{ }^{*}=M_{\text {curl }}^{T}$

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
1 & 1 \\
0 & -1 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

...but must account for weighted inner product: \langle curla, $b\rangle=\left\langle a, \text { curl }^{*} b\right\rangle_{w}$ So, divide the rows by edge weights:

Make a Guess (Slide 1 of 2)

- Before: Approximate \bar{Y} with a ranking
- Now: Approximate \bar{Y} with triangle values

Make a Guess (Slide 1 of 2)

- Before: Approximate \bar{Y} with a ranking
- Now: Approximate \bar{Y} with triangle values

Guess:

$$
\left[\begin{array}{l}
a b c \\
b c d
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Resulting edge values:

$$
M_{\text {curl }} \text { guess }=\left[\begin{array}{cc}
0.25 & 0 \\
-0.5 & 0 \\
0.33 & 0.33 \\
0 & -0.5 \\
0 & 0.5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
1.5 \\
-3 \\
2 \\
0 \\
0 \\
0
\end{array}\right]
$$

Make a Guess (Slide 2 of 2)
Guess:

$$
\left[\begin{array}{l}
a b c \\
b c d
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

The Least-Squares Solution

Curl Values:

$$
\left[\begin{array}{l}
a b c \\
b c d
\end{array}\right]=\left[\begin{array}{l}
7.75 \\
1.81
\end{array}\right]
$$

Resulting edge values:
$M_{\text {curl }^{*} \text { solution }}=\left[\begin{array}{cc}0.25 & 0 \\ -0.5 & 0 \\ 0.33 & 0.33 \\ 0 & -0.5 \\ 0 & 0.5 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}7.75 \\ 1.81\end{array}\right]=\left[\begin{array}{c}1.94 \\ -3.88 \\ 3.19 \\ -0.91 \\ 0.91 \\ 0\end{array}\right]$

Curl Flow:

Computing the Error

Measure	Formula	Guess	Solution				
Error	$\\|\bar{Y}-\operatorname{grad}(s)\\|_{2, W}$	8.83	7.63				
Relative Error	$\frac{\\|\bar{Y}-\operatorname{grad}(s)\\|_{2, w}}{\\|\bar{Y}\\|_{2, w}}$	0.60	0.52				

How to Think About the Solution

(a) Weights = Conductance

(b) \quad Edge $=$ Potential Difference

$$
\text { (a) } *(\mathrm{~b})=\text { Current }
$$

The Harmonic Flow

So far, we've captured:

- Portion of \bar{Y} accounted for by a ranking
- Portion of \bar{Y} accounted for by a triangular flow

What remains:

- Portion of \bar{Y} accounted for by non-triangular flow

We call this the harmonic flow.

The Harmonic Flow

So far, we've captured:

- Portion of \bar{Y} accounted for by a ranking
- Portion of \bar{Y} accounted for by a triangular flow

What remains:

- Portion of \bar{Y} accounted for by non-triangular flow

We call this the harmonic flow.

Harmonic flow must be:

- Divergence-free (so that it's a flow)
- Curl-free (we already captured local flow)

Formally, the space of all harmonic flows is:

$$
\begin{aligned}
S_{H} & =\operatorname{ker}(\text { div }) \cap \operatorname{ker}(\text { curl }) \\
& =\operatorname{ker}\left(\operatorname{grad}^{*}\right) \cap \operatorname{ker}(\operatorname{curl})
\end{aligned}
$$

Computing the Best Harmonic Flow
 Claim: $\operatorname{ker}\left(\operatorname{grad}^{*}\right) \cap \operatorname{ker}(\operatorname{curl})=\operatorname{ker}\left(\operatorname{curl}^{*} \circ \operatorname{curl}+\operatorname{grad} \circ \operatorname{grad}^{*}\right)$

Computing the Best Harmonic Flow

Claim: $\operatorname{ker}\left(\operatorname{grad}^{*}\right) \cap \operatorname{ker}($ curl $)=\operatorname{ker}\left(\operatorname{curl}^{*} \circ \operatorname{curl}+\operatorname{grad} \circ \operatorname{grad}^{*}\right)$

\subseteq : Straightforward

Computing the Best Harmonic Flow

Claim: $\operatorname{ker}\left(\operatorname{grad}^{*}\right) \cap \operatorname{ker}($ curl $)=\operatorname{ker}\left(\operatorname{curl}^{*} \circ \operatorname{curl}+\operatorname{grad} \circ \operatorname{grad}^{*}\right)$

\subseteq : Straightforward

ऐ:
Suppose $x \in \operatorname{ker}\left(\right.$ curl $^{*} \circ$ curl $\left.+\operatorname{grad} \circ \operatorname{grad}^{*}\right)$.
Then

$$
\begin{aligned}
0 & =\langle x, 0\rangle \\
& =\left\langle x,\left(\operatorname{curl}^{*} \circ \operatorname{curl}+\operatorname{grad} \circ \operatorname{grad}^{*}\right) x\right\rangle \\
& =\left\langle x,\left(\operatorname{curl}^{*} \circ \operatorname{curl}\right) x\right\rangle+\left\langle x,\left(\operatorname{grad} \circ \operatorname{grad}^{*}\right) x\right\rangle \\
& =\langle\operatorname{curl} x, \operatorname{curl} x\rangle+\left\langle\operatorname{grad}^{*} x, \operatorname{grad}^{*} x\right\rangle \\
& =\|\operatorname{curl} x\|^{2}+\left\|\operatorname{grad}^{*} x\right\|^{2}
\end{aligned}
$$

$\Longrightarrow\|\operatorname{curl} x\|=\left\|\operatorname{grad}^{*} x\right\|=0$.
$\Longrightarrow x \in \operatorname{ker}($ curl $)$ and $x \in \operatorname{ker}\left(\right.$ grad $\left.^{*}\right)$
$\Longrightarrow x \in \operatorname{ker}\left(\operatorname{grad}^{*}\right) \cap \operatorname{ker}($ curl $)$

Flows are Perpendicular

We can now find:

- G-Gradient part
- C - Curl flow
- H - Harmonic Flow

We'll see that:

- G, C, and H are perpendicular
- $G+C+H=\bar{Y}$

Overview by Example

Note: each row sums to the corresponding edge value!

Overview (Gradient)

Gradient Part

Notice:

- It's a directed acyclic graph (no flows)

Overview (Curl Flow)

Edge Values

E

Notice:

- Only the edges in a triangle have a nonzero-values
- All edges in this triangle have the same value

Overview (Harmonic Flow)

Harmonic Flow

Notice:

- The edges in the non-local loop dominate

Why the Components are Orthogonal

(1) Why G is orthogonal to C and H

$$
\begin{aligned}
a \in \operatorname{im}(\operatorname{grad})^{\perp} & \Longleftrightarrow\langle\operatorname{grad}(f), a\rangle=0 \quad \forall f \\
& \Longleftrightarrow\left\langle f, \operatorname{grad}^{*} a\right\rangle=0 \quad \forall f \\
& \Longleftrightarrow \operatorname{grad}^{*} a=\operatorname{div}(a)=0 \\
& \Longleftrightarrow a \text { is a flow } \quad \checkmark
\end{aligned}
$$

Since C and H are flows, then: $C, H \perp G$.

Why the Components are Orthogonal

(1) Why G is orthogonal to C and H

$$
\begin{aligned}
a \in \operatorname{im}(\operatorname{grad})^{\perp} & \Longleftrightarrow\langle\operatorname{grad}(f), a\rangle=0 \quad \forall f \\
& \Longleftrightarrow\left\langle f, \operatorname{grad}^{*} a\right\rangle=0 \quad \forall f \\
& \Longleftrightarrow \operatorname{grad}^{*} a=\operatorname{div}(a)=0 \\
& \Longleftrightarrow a \text { is a flow } \quad \checkmark
\end{aligned}
$$

Since C and H are flows, then: $C, H \perp G$.
(2) Why C is orthogonal to H

$$
\begin{aligned}
a \in \operatorname{im}\left(\text { curl }^{*}\right)^{\perp} & \Longleftrightarrow\left\langle\operatorname{curl}^{*} A, a\right\rangle=0 \quad \forall A \in \operatorname{im}\left(\text { curl }^{*}\right)^{\perp} \\
& \Longleftrightarrow\langle A, \operatorname{curl}(a)\rangle=0 \quad \forall A \\
& \Longleftrightarrow \operatorname{curl}(a)=0 \\
& \Longleftrightarrow a \text { is curl-free } \quad \checkmark
\end{aligned}
$$

Since H is curl-free, then $H \perp G$.

Real Data - Revisited

For each flow $F \in\{G, C, H\}$, compute $\left(\frac{\|F\|_{2, w}}{\|\bar{Y}\|_{2, w}}\right)^{2}$

	Gradient	Curl Flow	Harmonic Flow
Tennis	0.36	0.64	0.001
Golf	0.63	0.37	0
Chess	0.45	0.04	0.51

Observations:

- Rankability: same as before
- Golf: no harmonic flow because all triangles filled in
- Tennis: also low harmonic flow

Comparing to a Random Baseline

Using actual data:

	Gradient	Curl Flow	Harmonic Flow
Tennis	0.36	0.64	0.001
Golf	0.63	0.37	0
Chess	0.45	0.04	0.51

After randomizing edges and edge values (preserving sparsity):

	Gradient	Curl Flow	Harmonic Flow
Tennis	0.21	0.58	0.21
Golf	0.06	0.94	0.0
Chess	0.40	0.000035	0.60

Observations:

- Randomized chess data had high gradient

Acknowledgements

- Ideas drawn from Statistical ranking and combinatorial Hodge theory by Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye
- Prof. De Silva for explanations and ideas for new directions

