#### Ranking Alternatives From Comparison Data

Victor de Fontnouvelle

Advisor: Prof. Vin de Silva

3

Pomona College

December 12, 2019

#### Ranking Alternatives

<u>Goal</u>: use voter data to rank the best alternatives <u>Voters</u>: indicate a preference for certain alternatives

Examples:

| Goal                    | Alternatives | Voters  |
|-------------------------|--------------|---------|
| Tennis Player Standings | Players      | Matches |
| Rank Netflix Shows      | Shows        | Users   |
| Web Ranking             | Webpages     | Links   |

#### Example: Tennis Matches

| Loser |
|-------|
| Bob   |
| Carl  |
| Bob   |
| Dan   |
| Bob   |
| Dan   |
|       |

3

<ロ> (日) (日) (日) (日) (日)

#### Example: Tennis Matches

| Winner | Loser | A B C D                                              |                                                                                         |
|--------|-------|------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Anne   | Bob   | A [0 -1 -3 0]                                        | АВСД                                                                                    |
| Anne   | Carl  | × B 1 0 -1 0                                         |                                                                                         |
| Anne   | Carl  | $Y = C \begin{bmatrix} 3 & 1 & 0 & -1 \end{bmatrix}$ |                                                                                         |
| Anne   | Carl  | D 0 1 0                                              | $ar{Y} = egin{bmatrix} 1 & 0 & -rac{1}{3} & 0 \ 1 & rac{1}{2} & 0 & -1 \end{bmatrix}$ |
| Bob    | Carl  |                                                      | $r = \begin{bmatrix} 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$           |
| Bob    | Carl  | ABCD                                                 |                                                                                         |
| Carl   | Bob   | [0 1 3 0]                                            |                                                                                         |
| Bob    | Dan   |                                                      |                                                                                         |
| Dan    | Bob   | $w = \begin{bmatrix} 3 & 3 & 0 & 1 \end{bmatrix}$    |                                                                                         |
| Carl   | Dan   | $\begin{bmatrix} 0 & 2 & 1 & 0 \end{bmatrix}$        |                                                                                         |

3

<ロ> (日) (日) (日) (日) (日)

#### Making a Guess

Guess a Rough Ranking:  $\begin{array}{ccc} A & B & C & D \\ s = \begin{bmatrix} 3 & 1 & 0 & 1 \end{bmatrix}^{T} \end{array}$ 

Expected results:

$$match_{ab} = s_b - s_a = 1 - 3 = -2$$

Can think of as the gradient, because it captures the difference

$$\operatorname{grad}(s) = \begin{bmatrix} 0 & -2 & -3 & -2 \\ 2 & 0 & -1 & 0 \\ 3 & 1 & 0 & 1 \\ 2 & 0 & -1 & 0 \end{bmatrix}$$

# How Good Was Our Guess? ABCD $\bar{Y} = \begin{bmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & -\frac{1}{3} & 0 \\ 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \operatorname{grad}(s) = \begin{bmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ 2 & 0 & 2 & 0 \end{bmatrix}$ $E = \bar{Y} - \text{grad}(s) = \begin{bmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ 2 & 0 & 2 & 0 \end{bmatrix}$

Let's take the Frobenius norm!  $||E||_2 = (\Sigma_{i,j}E_{ij}^2)^{0.5}$ 

# How Good Was Our Guess? ABCD $\bar{Y} = \begin{bmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & -\frac{1}{3} & 0 \\ 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \operatorname{grad}(s) = \begin{bmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ -2 & 0 & 2 & 0 \end{bmatrix}$ $E = \bar{Y} - \text{grad}(s) = \begin{vmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ -2 & 0 & 2 & 0 \end{vmatrix}$

Let's take the Frobenius norm!  $||E||_2 = (\sum_{i,j} E_{ij}^2)^{0.5}$ ... but we need to account for the weight

$$w = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 1 & 0 & 3 & 2 \\ 3 & 3 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{bmatrix} \quad ||E||_{2,w} = (\Sigma_{i,j} w_{ij} E_{ij}^2)^{0.5} \approx 8.37$$

### Quantifying the Error

Two Measures:

Error: 
$$||\bar{Y} - \operatorname{grad}(s)||_{2,W}$$
 Relative Error:  $\frac{||\bar{Y} - \operatorname{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}$ 

| Error          | 8.37 |
|----------------|------|
| Relative Error | 2.56 |

3

E + 4 E +

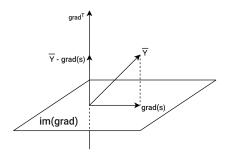
#### Computing Best Solution (Slide 1 of 3)

Want to solve for s in min  $||\bar{Y} - \operatorname{grad}(s)||_{2,w}$ Solution: use linear algebra! So how do represent the gradient as a matrix?

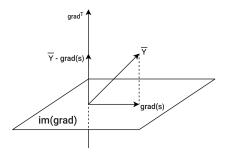
Want: 
$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \rightarrow \begin{bmatrix} a \text{ vs. } b \\ a \text{ vs. } c \\ a \text{ vs. } d \\ b \text{ vs. } c \\ b \text{ vs. } d \\ c \text{ vs. } d \end{bmatrix}$$

$$M_{
m grad} = egin{bmatrix} -1 & 1 & 0 & 0 \ -1 & 0 & 1 & 0 \ -1 & 0 & 0 & 1 \ 0 & -1 & 1 & 0 \ 0 & -1 & 1 & 0 \ 0 & -1 & 0 & 1 \ 0 & 0 & -1 & 1 \end{bmatrix}$$

#### Computing Best Solution (Slide 2 of 3)



#### Computing Best Solution (Slide 2 of 3)



$$ar{Y} - ext{grad}(s) \perp ext{im}( ext{grad}) \Leftrightarrow \langle ar{Y} - ext{grad}(s), ext{grad}(x) 
angle = 0 \quad orall x \ \Leftrightarrow \langle ext{grad}^*(ar{Y} - ext{grad}(s)), x 
angle = 0 \quad orall x \ \Leftrightarrow ext{grad}^*(ar{Y} - ext{grad}(s)) = 0$$

We solve to get:  $s = (\text{grad}^*\text{grad})^{-1}\text{grad}^*y$ 

#### Computing Best Solution (Slide 3 of 3)

Want matrix representation for  $\text{grad}^*$ Normally, we'd have  $M_{\text{grad}^*} = M_{\text{grad}}^T$ .

$$M_{\text{grad}}^{T} = \begin{bmatrix} -1 & -1 & -1 & 0 & 0 & 0\\ 1 & 0 & 0 & -1 & -1 & 0\\ 0 & 1 & 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \leftarrow \text{multiply by} - \begin{bmatrix} ab\\ ac\\ ad\\ bc\\ bd\\ cd \end{bmatrix}$$

#### Computing Best Solution (Slide 3 of 3)

Want matrix representation for  $\text{grad}^*$ Normally, we'd have  $M_{\text{grad}^*} = M_{\text{grad}}^T$ .

$$M_{\text{grad}}^{T} = \begin{bmatrix} -1 & -1 & -1 & 0 & 0 & 0\\ 1 & 0 & 0 & -1 & -1 & 0\\ 0 & 1 & 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \leftarrow \text{multiply by} - \begin{bmatrix} ab\\ ac\\ ad\\ bc\\ bd\\ cd \end{bmatrix}$$

...but must acct for weighted inner product:  $\langle \operatorname{grad} f, \bar{Y} \rangle_w = \langle f, \operatorname{grad}^* \bar{Y} \rangle$ 

$$M_{\text{grad}^*} = M_{\text{grad}}^{T} \text{diag}(w) = \begin{bmatrix} -1 & -3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -3 & -2 & 0 \\ 0 & 3 & 0 & 3 & 0 & -1 \\ 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix}$$

#### Finally, the Solution

$$M_{\text{grad}} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad M_{\text{grad}^*} = \begin{bmatrix} 1 & 3 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 3 & 2 & 0 \\ 0 & -3 & 0 & -3 & 0 & 1 \\ 0 & -3 & 0 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & -2 & -1 \end{bmatrix}$$

$$s = (\text{grad}^*\text{grad})^{-1}\text{grad}^*\bar{Y} \\ = \begin{bmatrix} 0.81 & -0.13 & -0.203 & -0.486 \end{bmatrix} \\ A & B & C & D \end{bmatrix}$$

- ∢ ≣ →

How Good is the Solution?

$$\begin{array}{cccc} A & B & C & D \\ [0.81 & -0.13 & -0.203 & -0.486] \\ \\ grad(s) = \begin{bmatrix} 0 & -0.94 & -1.02 & -0.28 \\ 0.94 & 0 & -0.08 & -0.36 \\ 1.02 & 0.08 & 0 & -0.28 \\ 0.28 & 0.36 & 0.28 & 0 \end{bmatrix} \quad \bar{Y} = \begin{bmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & -\frac{1}{3} & 0 \\ 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

| Measure        | Formula                                                                  | Guess | Solution |
|----------------|--------------------------------------------------------------------------|-------|----------|
| Error          | $  ar{Y} - \operatorname{grad}(s)  _{2,W}$                               | 8.37  | 2.95     |
| Relative Error | $rac{  ar{\pmb{Y}}-	ext{grad}(\pmb{s})  _{2,w}}{  ar{\pmb{Y}}  _{2,w}}$ | 2.56  | 0.90     |

<ロ> (日) (日) (日) (日) (日)

#### Ranking Real Data

Denote Rankability = 
$$\left(\frac{||\operatorname{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}\right)^2$$
  
• Note: Rankability  $\in [0, 1]$ 

<ロ> (日) (日) (日) (日) (日)

#### Ranking Real Data

Denote Rankability = 
$$\left(\frac{||\operatorname{grad}(s)||_{2,w}}{||\overline{Y}||_{2,w}}\right)^2$$
  
• Note: Rankability  $\in [0, 1]$ 

- 1. 2017 Major Tennis Tournaments
  - 453 matches, 50 players
    - Not many matches for each player
  - Rankability = 0.37

#### Ranking Real Data

Denote Rankability = 
$$\left(\frac{||\operatorname{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}\right)^2$$
  
• Note: Rankability  $\in [0, 1]$ 

- 1. 2017 Major Tennis Tournaments
  - 453 matches, 50 players
    - Not many matches for each player
  - Rankability = 0.37
- 2. Major Golf Tournaments in 2018
  - 4 tournaments, 50 players
    - Every tournament compares all 50 players
    - So  $4 * \binom{50}{2} = 4900$  voters
  - Rankability = 0.63
- 3. 9-Round Chess Tournament
  - 119 matches, 50 players
  - Rankability = 0.45

#### Data Where Ranking is Impossible

| Winner | Loser |
|--------|-------|
| Anne   | Bob   |
| Bob    | Carl  |
| Carl   | Anne  |

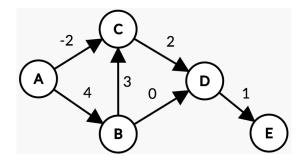
- This data is circular
- No ranking works

$$ar{Y} = egin{bmatrix} 0 & -1 & 1 \ 1 & 0 & -1 \ -1 & 1 & 0 \end{bmatrix} \qquad s = egin{bmatrix} 0 \ 0 \ 0 \ 0 \end{bmatrix}$$

Rankability = 
$$\left(\frac{||\text{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}\right)^2 = 0.0$$

Victor de Fontnouvelle (Pomona College) Ranking Alternatives From Comparison Data

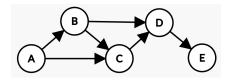
13 / 35



◆□> ◆圖> ◆臣> ◆臣> □臣

#### **High-Level Overview**

 $\mathsf{Perfect}\ \mathsf{ranking}\ \Longrightarrow\ \mathsf{directed}\ \mathsf{acyclic}\ \mathsf{graph}$ 

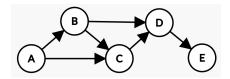


- 4 ⊒ →

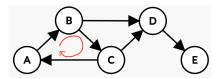
< 67 ▶

#### High-Level Overview

 $\mathsf{Perfect} \ \mathsf{ranking} \ \Longrightarrow \ \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph}$ 



Otherwise, there are circular flows

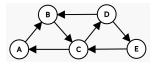


Two ways to think of circular flows:

- (Good) Like an electric current
- (Bad) Can't be ranked

#### Two Types of Flows

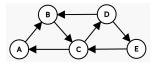
(1) Triangular inconsistencies and linear combinations thereof



Call these "curl flows"

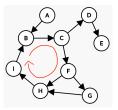
### Two Types of Flows

(1) Triangular inconsistencies and linear combinations thereof



Call these "curl flows"

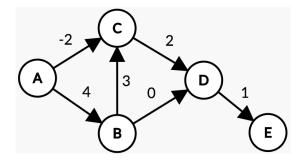
(2) Other flows that can't be reduced to triangular inconsistencies



These correspond to "harmonic flows"

Victor de Fontnouvelle (Pomona College) Ranking Alternatives From Comparison Data Decem

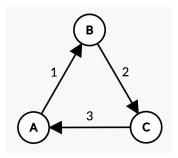
Computing the Curl Flow - An Example



< 一型

-

#### Computing the Curl

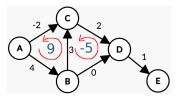


$$\operatorname{curl}(abc) = ab + bc + ca$$
  
= 1 + 2 + 3  
= 6

Note: ca = -ac, so  $ab + bc + ca = ab + bc - ac_{ab}$ ,  $c_{ab}$ ,  $c_{ab}$ 

3 × 3

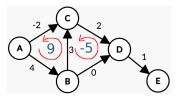
#### Computing the Curl of All Triangles



Want to compute the curl for each triangle

• 
$$\operatorname{curl}(bcd) = bc - bd + cd$$

### Computing the Curl of All Triangles



Want to compute the curl for each triangle

• 
$$\operatorname{curl}(\operatorname{abc}) = \operatorname{ab} - \operatorname{ac} + \operatorname{bc}$$

• 
$$\operatorname{curl}(bcd) = bc - bd + cd$$

Denote the first matrix  $M_{
m curl}$ , and the second matrix  $\bar{Y}$  .

#### Victor de Fontnouvelle (Pomona College) Ranking Alternatives From Comparison Data

**B N N B N** 

What is  $M_{curl^*}$ ? First guess:  $M_{curl^*} = M_{curl}^T$ 

 $\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 1 \\ 0 & -1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ 

...but must account for weighted inner product:  $\langle \text{curl}a, b \rangle = \langle a, \text{curl}^*b \rangle_w$ So, divide the rows by edge weights:

(Weights:) 
$$\begin{bmatrix} 4\\2\\3\\2\\2\\1 \end{bmatrix} \qquad \qquad M_{\text{curl}^*} = \text{diag}(w)^{-1}M_{\text{curl}^{\mathsf{T}}} = \begin{bmatrix} 0.25 & 0\\-0.5 & 0\\0.33 & 0.33\\0 & -0.5\\0 & 0.5\\0 & 0 \end{bmatrix}$$

### Make a Guess (Slide 1 of 2)

- Before: Approximate  $\bar{Y}$  with a ranking
- Now: Approximate  $\bar{Y}$  with triangle values

#### Make a Guess (Slide 1 of 2)

- Before: Approximate  $\bar{Y}$  with a ranking
- Now: Approximate  $\bar{Y}$  with triangle values

Guess:

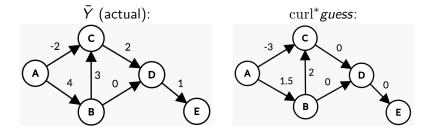
$$\begin{bmatrix} abc \\ bcd \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

Resulting edge values:

$$M_{\text{curl}^*}guess = \begin{bmatrix} 0.25 & 0 \\ -0.5 & 0 \\ 0.33 & 0.33 \\ 0 & -0.5 \\ 0 & 0.5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.5 \\ -3 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

### Make a Guess (Slide 2 of 2) Guess:

$$\begin{bmatrix} abc \\ bcd \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$



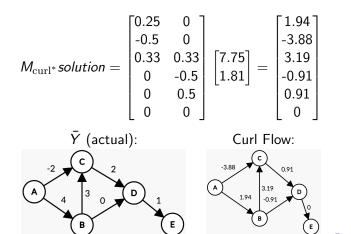
| Measure        | Formula                                                | Value         |
|----------------|--------------------------------------------------------|---------------|
| Error          | $  ar{Y} - \operatorname{grad}(s)  _{2,W}$             | 8.83          |
| Relative Error | $rac{  ar{Y}-	ext{grad}(s)  _{2,w}}{  ar{Y}  _{2,w}}$ | 0.60          |
|                | < □ ▶                                                  | ∢/₽ > < ≡ > . |

3. 3

### The Least-Squares Solution Curl Values:

$$\begin{bmatrix} abc \\ bcd \end{bmatrix} = \begin{bmatrix} 7.75 \\ 1.81 \end{bmatrix}$$

Resulting edge values:



December 12, 2019 23 / 35

#### Computing the Error

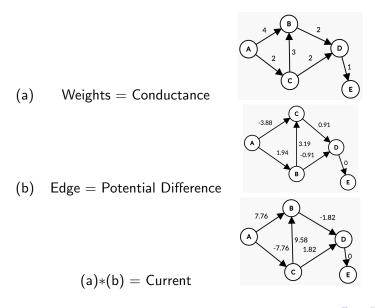
| Measure        | Formula                                                         | Guess | Solution |
|----------------|-----------------------------------------------------------------|-------|----------|
| Error          | $  ar{Y} - 	ext{grad}(s)  _{2,W}$                               | 8.83  | 7.63     |
| Relative Error | $rac{  ar{m{Y}}-	ext{grad}(m{s})  _{2,w}}{  ar{m{Y}}  _{2,w}}$ | 0.60  | 0.52     |

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

- ∢ ≣ →

#### How to Think About the Solution



#### The Harmonic Flow

So far, we've captured:

- Portion of  $\bar{Y}$  accounted for by a ranking
- Portion of  $\bar{Y}$  accounted for by a triangular flow

What remains:

• Portion of  $\bar{Y}$  accounted for by non-triangular flow

We call this the harmonic flow.

# The Harmonic Flow

So far, we've captured:

- Portion of  $\bar{Y}$  accounted for by a ranking
- Portion of  $\bar{Y}$  accounted for by a triangular flow

What remains:

• Portion of  $\bar{Y}$  accounted for by non-triangular flow

We call this the harmonic flow.

Harmonic flow must be:

- Divergence-free (so that it's a flow)
- Curl-free (we already captured local flow)

Formally, the space of all harmonic flows is:

$$egin{aligned} \mathcal{S}_{\mathcal{H}} &= \ker(\operatorname{div}) \cap \ker(\operatorname{curl}) \ &= \ker(\operatorname{grad}^*) \cap \ker(\operatorname{curl}) \end{aligned}$$

## Computing the Best Harmonic Flow

<u>Claim</u>:  $\operatorname{ker}(\operatorname{grad}^*) \cap \operatorname{ker}(\operatorname{curl}) = \operatorname{ker}(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*)$ 

# Computing the Best Harmonic Flow

<u>Claim</u>:  $\operatorname{ker}(\operatorname{grad}^*) \cap \operatorname{ker}(\operatorname{curl}) = \operatorname{ker}(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*)$ 

 $\underline{\subseteq}: \ \mathsf{Straightforward}$ 

3. 3

# Computing the Best Harmonic Flow

 $\underline{Claim}: \ \ker(\operatorname{grad}^*) \cap \ker(\operatorname{curl}) = \ker(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*)$ 

 $\underline{\subseteq}: \ Straightforward$ 

```
\underline{\underline{}}:
Suppose x \in \ker(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*).
Then
```

$$\begin{split} 0 &= \langle x, 0 \rangle \\ &= \langle x, (\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*) x \rangle \\ &= \langle x, (\operatorname{curl}^* \circ \operatorname{curl}) x \rangle + \langle x, (\operatorname{grad} \circ \operatorname{grad}^*) x \rangle \\ &= \langle \operatorname{curl} x, \operatorname{curl} x \rangle + \langle \operatorname{grad}^* x, \operatorname{grad}^* x \rangle \\ &= ||\operatorname{curl} x||^2 + ||\operatorname{grad}^* x||^2 \end{split}$$

 $\implies ||\operatorname{curl} x|| = ||\operatorname{grad}^* x|| = 0.$  $\implies x \in \operatorname{ker}(\operatorname{curl}) \text{ and } x \in \operatorname{ker}(\operatorname{grad}^*)$  $\implies x \in \operatorname{ker}(\operatorname{grad}^*) \cap \operatorname{ker}(\operatorname{curl}) \quad \checkmark$ 

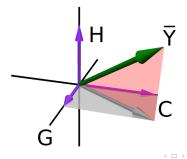
## Flows are Perpendicular

We can now find:

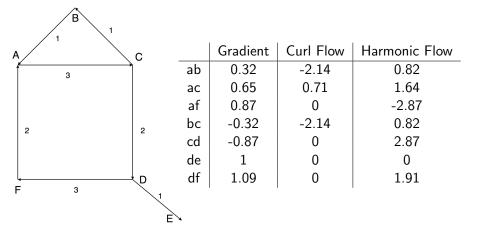
- G Gradient part
- C Curl flow
- H Harmonic Flow

We'll see that:

- G, C, and H are perpendicular
- $G + C + H = \overline{Y}$

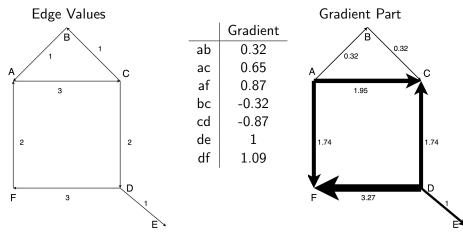


### Overview by Example



Note: each row sums to the corresponding edge value!

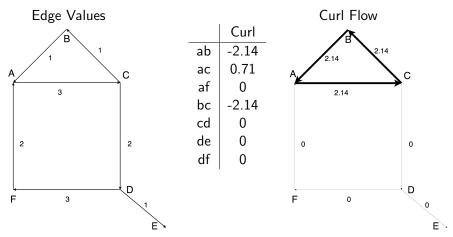
# Overview (Gradient)



#### Notice:

• It's a directed acyclic graph (no flows)

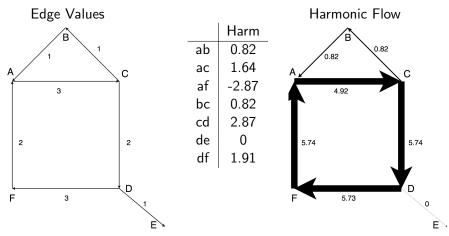
# Overview (Curl Flow)



Notice:

- Only the edges in a triangle have a nonzero-values
- All edges in this triangle have the same value

# Overview (Harmonic Flow)



Notice:

• The edges in the non-local loop dominate

Why the Components are Orthogonal (1) Why G is orthogonal to C and H

$$a \in \operatorname{im}(\operatorname{grad})^{\perp} \iff \langle \operatorname{grad}(f), a \rangle = 0 \quad \forall f$$
$$\iff \langle f, \operatorname{grad}^* a \rangle = 0 \quad \forall f$$
$$\iff \operatorname{grad}^* a = \operatorname{div}(a) = 0$$
$$\iff a \text{ is a flow} \quad \checkmark$$

Since C and H are flows, then:  $C, H \perp G$ .

Why the Components are Orthogonal (1) Why G is orthogonal to C and H

$$a \in \operatorname{im}(\operatorname{grad})^{\perp} \iff \langle \operatorname{grad}(f), a \rangle = 0 \quad \forall f$$
$$\iff \langle f, \operatorname{grad}^* a \rangle = 0 \quad \forall f$$
$$\iff \operatorname{grad}^* a = \operatorname{div}(a) = 0$$
$$\iff a \text{ is a flow} \quad \checkmark$$

Since C and H are flows, then:  $C, H \perp G$ .

(2) Why C is orthogonal to H

$$a \in \operatorname{im}(\operatorname{curl}^*)^{\perp} \iff \langle \operatorname{curl}^* A, a \rangle = 0 \quad \forall A \in \operatorname{im}(\operatorname{curl}^*)^{\perp}$$
$$\iff \langle A, \operatorname{curl}(a) \rangle = 0 \quad \forall A$$
$$\iff \operatorname{curl}(a) = 0$$
$$\iff a \text{ is curl-free} \quad \checkmark$$

Since *H* is curl-free, then  $H \perp G$ .

### Real Data - Revisited

For each flow  $F \in \{G, C, H\}$ , compute  $\left(\frac{||F||_{2,w}}{||\check{Y}||_{2,w}}\right)^2$ 

|        | Gradient | Curl Flow | Harmonic Flow |
|--------|----------|-----------|---------------|
| Tennis | 0.36     | 0.64      | 0.001         |
| Golf   | 0.63     | 0.37      | 0             |
| Chess  | 0.45     | 0.04      | 0.51          |

Observations:

- Rankability: same as before
- Golf: no harmonic flow because all triangles filled in
- Tennis: also low harmonic flow

# Comparing to a Random Baseline

Using actual data:

|        | Gradient | Curl Flow | Harmonic Flow |
|--------|----------|-----------|---------------|
| Tennis | 0.36     | 0.64      | 0.001         |
| Golf   | 0.63     | 0.37      | 0             |
| Chess  | 0.45     | 0.04      | 0.51          |

After randomizing edges and edge values (preserving sparsity):

|        | Gradient | Curl Flow | Harmonic Flow |
|--------|----------|-----------|---------------|
| Tennis | 0.21     | 0.58      | 0.21          |
| Golf   | 0.06     | 0.94      | 0.0           |
| Chess  | 0.40     | 0.000035  | 0.60          |

Observations:

• Randomized chess data had high gradient

### Acknowledgements

- Ideas drawn from *Statistical ranking and combinatorial Hodge theory* by Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye
- Prof. De Silva for explanations and ideas for new directions

