Ranking Alternatives From Comparison Data

Victor de Fontnouvelle

Advisor: Prof. Vin de Silva

3

Pomona College

December 12, 2019

Ranking Alternatives

<u>Goal</u>: use voter data to rank the best alternatives <u>Voters</u>: indicate a preference for certain alternatives

Examples:

Goal	Alternatives	Voters
Tennis Player Standings	Players	Matches
Rank Netflix Shows	Shows	Users
Web Ranking	Webpages	Links

Example: Tennis Matches

Loser
Bob
Carl
Bob
Dan
Bob
Dan

3

<ロ> (日) (日) (日) (日) (日)

Example: Tennis Matches

Winner	Loser	A B C D	
Anne	Bob	A [0 -1 -3 0]	АВСД
Anne	Carl	× B 1 0 -1 0	
Anne	Carl	$Y = C \begin{bmatrix} 3 & 1 & 0 & -1 \end{bmatrix}$	
Anne	Carl	D 0 1 0	$ar{Y} = egin{bmatrix} 1 & 0 & -rac{1}{3} & 0 \ 1 & rac{1}{2} & 0 & -1 \end{bmatrix}$
Bob	Carl		$r = \begin{bmatrix} 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Bob	Carl	ABCD	
Carl	Bob	[0 1 3 0]	
Bob	Dan		
Dan	Bob	$w = \begin{bmatrix} 3 & 3 & 0 & 1 \end{bmatrix}$	
Carl	Dan	$\begin{bmatrix} 0 & 2 & 1 & 0 \end{bmatrix}$	

3

<ロ> (日) (日) (日) (日) (日)

Making a Guess

Guess a Rough Ranking: $\begin{array}{ccc} A & B & C & D \\ s = \begin{bmatrix} 3 & 1 & 0 & 1 \end{bmatrix}^{T} \end{array}$

Expected results:

$$match_{ab} = s_b - s_a = 1 - 3 = -2$$

Can think of as the gradient, because it captures the difference

$$\operatorname{grad}(s) = \begin{bmatrix} 0 & -2 & -3 & -2 \\ 2 & 0 & -1 & 0 \\ 3 & 1 & 0 & 1 \\ 2 & 0 & -1 & 0 \end{bmatrix}$$

How Good Was Our Guess? ABCD $\bar{Y} = \begin{bmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & -\frac{1}{3} & 0 \\ 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \operatorname{grad}(s) = \begin{bmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ 2 & 0 & 2 & 0 \end{bmatrix}$ $E = \bar{Y} - \text{grad}(s) = \begin{bmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ 2 & 0 & 2 & 0 \end{bmatrix}$

Let's take the Frobenius norm! $||E||_2 = (\Sigma_{i,j}E_{ij}^2)^{0.5}$

How Good Was Our Guess? ABCD $\bar{Y} = \begin{bmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & -\frac{1}{3} & 0 \\ 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \operatorname{grad}(s) = \begin{bmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ -2 & 0 & 2 & 0 \end{bmatrix}$ $E = \bar{Y} - \text{grad}(s) = \begin{vmatrix} 0 & 1 & 2 & 2 \\ -1 & 0 & \frac{2}{3} & 0 \\ -2 & -\frac{2}{3} & 0 & -2 \\ -2 & 0 & 2 & 0 \end{vmatrix}$

Let's take the Frobenius norm! $||E||_2 = (\sum_{i,j} E_{ij}^2)^{0.5}$... but we need to account for the weight

$$w = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 1 & 0 & 3 & 2 \\ 3 & 3 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{bmatrix} \quad ||E||_{2,w} = (\Sigma_{i,j} w_{ij} E_{ij}^2)^{0.5} \approx 8.37$$

Quantifying the Error

Two Measures:

Error:
$$||\bar{Y} - \operatorname{grad}(s)||_{2,W}$$
 Relative Error: $\frac{||\bar{Y} - \operatorname{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}$

Error	8.37
Relative Error	2.56

3

E + 4 E +

Computing Best Solution (Slide 1 of 3)

Want to solve for s in min $||\bar{Y} - \operatorname{grad}(s)||_{2,w}$ Solution: use linear algebra! So how do represent the gradient as a matrix?

Want:
$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \rightarrow \begin{bmatrix} a \text{ vs. } b \\ a \text{ vs. } c \\ a \text{ vs. } d \\ b \text{ vs. } c \\ b \text{ vs. } d \\ c \text{ vs. } d \end{bmatrix}$$

$$M_{
m grad} = egin{bmatrix} -1 & 1 & 0 & 0 \ -1 & 0 & 1 & 0 \ -1 & 0 & 0 & 1 \ 0 & -1 & 1 & 0 \ 0 & -1 & 1 & 0 \ 0 & -1 & 0 & 1 \ 0 & 0 & -1 & 1 \end{bmatrix}$$

Computing Best Solution (Slide 2 of 3)

Computing Best Solution (Slide 2 of 3)

$$ar{Y} - ext{grad}(s) \perp ext{im}(ext{grad}) \Leftrightarrow \langle ar{Y} - ext{grad}(s), ext{grad}(x)
angle = 0 \quad orall x \ \Leftrightarrow \langle ext{grad}^*(ar{Y} - ext{grad}(s)), x
angle = 0 \quad orall x \ \Leftrightarrow ext{grad}^*(ar{Y} - ext{grad}(s)) = 0$$

We solve to get: $s = (\text{grad}^*\text{grad})^{-1}\text{grad}^*y$

Computing Best Solution (Slide 3 of 3)

Want matrix representation for grad^* Normally, we'd have $M_{\text{grad}^*} = M_{\text{grad}}^T$.

$$M_{\text{grad}}^{T} = \begin{bmatrix} -1 & -1 & -1 & 0 & 0 & 0\\ 1 & 0 & 0 & -1 & -1 & 0\\ 0 & 1 & 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \leftarrow \text{multiply by} - \begin{bmatrix} ab\\ ac\\ ad\\ bc\\ bd\\ cd \end{bmatrix}$$

Computing Best Solution (Slide 3 of 3)

Want matrix representation for grad^* Normally, we'd have $M_{\text{grad}^*} = M_{\text{grad}}^T$.

$$M_{\text{grad}}^{T} = \begin{bmatrix} -1 & -1 & -1 & 0 & 0 & 0\\ 1 & 0 & 0 & -1 & -1 & 0\\ 0 & 1 & 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \leftarrow \text{multiply by} - \begin{bmatrix} ab\\ ac\\ ad\\ bc\\ bd\\ cd \end{bmatrix}$$

...but must acct for weighted inner product: $\langle \operatorname{grad} f, \bar{Y} \rangle_w = \langle f, \operatorname{grad}^* \bar{Y} \rangle$

$$M_{\text{grad}^*} = M_{\text{grad}}^{T} \text{diag}(w) = \begin{bmatrix} -1 & -3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -3 & -2 & 0 \\ 0 & 3 & 0 & 3 & 0 & -1 \\ 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix}$$

Finally, the Solution

$$M_{\text{grad}} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad M_{\text{grad}^*} = \begin{bmatrix} 1 & 3 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 3 & 2 & 0 \\ 0 & -3 & 0 & -3 & 0 & 1 \\ 0 & -3 & 0 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & -2 & -1 \end{bmatrix}$$

$$s = (\text{grad}^*\text{grad})^{-1}\text{grad}^*\bar{Y} \\ = \begin{bmatrix} 0.81 & -0.13 & -0.203 & -0.486 \end{bmatrix} \\ A & B & C & D \end{bmatrix}$$

- ∢ ≣ →

How Good is the Solution?

$$\begin{array}{cccc} A & B & C & D \\ [0.81 & -0.13 & -0.203 & -0.486] \\ \\ grad(s) = \begin{bmatrix} 0 & -0.94 & -1.02 & -0.28 \\ 0.94 & 0 & -0.08 & -0.36 \\ 1.02 & 0.08 & 0 & -0.28 \\ 0.28 & 0.36 & 0.28 & 0 \end{bmatrix} \quad \bar{Y} = \begin{bmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & -\frac{1}{3} & 0 \\ 1 & \frac{1}{3} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Measure	Formula	Guess	Solution
Error	$ ar{Y} - \operatorname{grad}(s) _{2,W}$	8.37	2.95
Relative Error	$rac{ ar{\pmb{Y}}- ext{grad}(\pmb{s}) _{2,w}}{ ar{\pmb{Y}} _{2,w}}$	2.56	0.90

<ロ> (日) (日) (日) (日) (日)

Ranking Real Data

Denote Rankability =
$$\left(\frac{||\operatorname{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}\right)^2$$

• Note: Rankability $\in [0, 1]$

<ロ> (日) (日) (日) (日) (日)

Ranking Real Data

Denote Rankability =
$$\left(\frac{||\operatorname{grad}(s)||_{2,w}}{||\overline{Y}||_{2,w}}\right)^2$$

• Note: Rankability $\in [0, 1]$

- 1. 2017 Major Tennis Tournaments
 - 453 matches, 50 players
 - Not many matches for each player
 - Rankability = 0.37

Ranking Real Data

Denote Rankability =
$$\left(\frac{||\operatorname{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}\right)^2$$

• Note: Rankability $\in [0, 1]$

- 1. 2017 Major Tennis Tournaments
 - 453 matches, 50 players
 - Not many matches for each player
 - Rankability = 0.37
- 2. Major Golf Tournaments in 2018
 - 4 tournaments, 50 players
 - Every tournament compares all 50 players
 - So $4 * \binom{50}{2} = 4900$ voters
 - Rankability = 0.63
- 3. 9-Round Chess Tournament
 - 119 matches, 50 players
 - Rankability = 0.45

Data Where Ranking is Impossible

Winner	Loser
Anne	Bob
Bob	Carl
Carl	Anne

- This data is circular
- No ranking works

$$ar{Y} = egin{bmatrix} 0 & -1 & 1 \ 1 & 0 & -1 \ -1 & 1 & 0 \end{bmatrix} \qquad s = egin{bmatrix} 0 \ 0 \ 0 \ 0 \end{bmatrix}$$

Rankability =
$$\left(\frac{||\text{grad}(s)||_{2,w}}{||\bar{Y}||_{2,w}}\right)^2 = 0.0$$

Victor de Fontnouvelle (Pomona College) Ranking Alternatives From Comparison Data

13 / 35

◆□> ◆圖> ◆臣> ◆臣> □臣

High-Level Overview

 $\mathsf{Perfect}\ \mathsf{ranking}\ \Longrightarrow\ \mathsf{directed}\ \mathsf{acyclic}\ \mathsf{graph}$

- 4 ⊒ →

< 67 ▶

High-Level Overview

 $\mathsf{Perfect} \ \mathsf{ranking} \ \Longrightarrow \ \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph}$

Otherwise, there are circular flows

Two ways to think of circular flows:

- (Good) Like an electric current
- (Bad) Can't be ranked

Two Types of Flows

(1) Triangular inconsistencies and linear combinations thereof

Call these "curl flows"

Two Types of Flows

(1) Triangular inconsistencies and linear combinations thereof

Call these "curl flows"

(2) Other flows that can't be reduced to triangular inconsistencies

These correspond to "harmonic flows"

Victor de Fontnouvelle (Pomona College) Ranking Alternatives From Comparison Data Decem

Computing the Curl Flow - An Example

< 一型

-

Computing the Curl

$$\operatorname{curl}(abc) = ab + bc + ca$$

= 1 + 2 + 3
= 6

Note: ca = -ac, so $ab + bc + ca = ab + bc - ac_{ab}$, c_{ab} , c_{ab}

3 × 3

Computing the Curl of All Triangles

Want to compute the curl for each triangle

•
$$\operatorname{curl}(bcd) = bc - bd + cd$$

Computing the Curl of All Triangles

Want to compute the curl for each triangle

•
$$\operatorname{curl}(\operatorname{abc}) = \operatorname{ab} - \operatorname{ac} + \operatorname{bc}$$

•
$$\operatorname{curl}(bcd) = bc - bd + cd$$

Denote the first matrix $M_{
m curl}$, and the second matrix \bar{Y} .

Victor de Fontnouvelle (Pomona College) Ranking Alternatives From Comparison Data

B N N B N

What is M_{curl^*} ? First guess: $M_{curl^*} = M_{curl}^T$

 $\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 1 \\ 0 & -1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

...but must account for weighted inner product: $\langle \text{curl}a, b \rangle = \langle a, \text{curl}^*b \rangle_w$ So, divide the rows by edge weights:

(Weights:)
$$\begin{bmatrix} 4\\2\\3\\2\\2\\1 \end{bmatrix} \qquad \qquad M_{\text{curl}^*} = \text{diag}(w)^{-1}M_{\text{curl}^{\mathsf{T}}} = \begin{bmatrix} 0.25 & 0\\-0.5 & 0\\0.33 & 0.33\\0 & -0.5\\0 & 0.5\\0 & 0 \end{bmatrix}$$

Make a Guess (Slide 1 of 2)

- Before: Approximate \bar{Y} with a ranking
- Now: Approximate \bar{Y} with triangle values

Make a Guess (Slide 1 of 2)

- Before: Approximate \bar{Y} with a ranking
- Now: Approximate \bar{Y} with triangle values

Guess:

$$\begin{bmatrix} abc \\ bcd \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

Resulting edge values:

$$M_{\text{curl}^*}guess = \begin{bmatrix} 0.25 & 0 \\ -0.5 & 0 \\ 0.33 & 0.33 \\ 0 & -0.5 \\ 0 & 0.5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.5 \\ -3 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Make a Guess (Slide 2 of 2) Guess:

$$\begin{bmatrix} abc \\ bcd \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

Measure	Formula	Value
Error	$ ar{Y} - \operatorname{grad}(s) _{2,W}$	8.83
Relative Error	$rac{ ar{Y}- ext{grad}(s) _{2,w}}{ ar{Y} _{2,w}}$	0.60
	< □ ▶	∢/₽ > < ≡ > .

3. 3

The Least-Squares Solution Curl Values:

$$\begin{bmatrix} abc \\ bcd \end{bmatrix} = \begin{bmatrix} 7.75 \\ 1.81 \end{bmatrix}$$

Resulting edge values:

December 12, 2019 23 / 35

Computing the Error

Measure	Formula	Guess	Solution
Error	$ ar{Y} - ext{grad}(s) _{2,W}$	8.83	7.63
Relative Error	$rac{ ar{m{Y}}- ext{grad}(m{s}) _{2,w}}{ ar{m{Y}} _{2,w}}$	0.60	0.52

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

- ∢ ≣ →

How to Think About the Solution

The Harmonic Flow

So far, we've captured:

- Portion of \bar{Y} accounted for by a ranking
- Portion of \bar{Y} accounted for by a triangular flow

What remains:

• Portion of \bar{Y} accounted for by non-triangular flow

We call this the harmonic flow.

The Harmonic Flow

So far, we've captured:

- Portion of \bar{Y} accounted for by a ranking
- Portion of \bar{Y} accounted for by a triangular flow

What remains:

• Portion of \bar{Y} accounted for by non-triangular flow

We call this the harmonic flow.

Harmonic flow must be:

- Divergence-free (so that it's a flow)
- Curl-free (we already captured local flow)

Formally, the space of all harmonic flows is:

$$egin{aligned} \mathcal{S}_{\mathcal{H}} &= \ker(\operatorname{div}) \cap \ker(\operatorname{curl}) \ &= \ker(\operatorname{grad}^*) \cap \ker(\operatorname{curl}) \end{aligned}$$

Computing the Best Harmonic Flow

<u>Claim</u>: $\operatorname{ker}(\operatorname{grad}^*) \cap \operatorname{ker}(\operatorname{curl}) = \operatorname{ker}(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*)$

Computing the Best Harmonic Flow

<u>Claim</u>: $\operatorname{ker}(\operatorname{grad}^*) \cap \operatorname{ker}(\operatorname{curl}) = \operatorname{ker}(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*)$

 $\underline{\subseteq}: \ \mathsf{Straightforward}$

3. 3

Computing the Best Harmonic Flow

 $\underline{Claim}: \ \ker(\operatorname{grad}^*) \cap \ker(\operatorname{curl}) = \ker(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*)$

 $\underline{\subseteq}: \ Straightforward$

```
\underline{\underline{}}:
Suppose x \in \ker(\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*).
Then
```

$$\begin{split} 0 &= \langle x, 0 \rangle \\ &= \langle x, (\operatorname{curl}^* \circ \operatorname{curl} + \operatorname{grad} \circ \operatorname{grad}^*) x \rangle \\ &= \langle x, (\operatorname{curl}^* \circ \operatorname{curl}) x \rangle + \langle x, (\operatorname{grad} \circ \operatorname{grad}^*) x \rangle \\ &= \langle \operatorname{curl} x, \operatorname{curl} x \rangle + \langle \operatorname{grad}^* x, \operatorname{grad}^* x \rangle \\ &= ||\operatorname{curl} x||^2 + ||\operatorname{grad}^* x||^2 \end{split}$$

 $\implies ||\operatorname{curl} x|| = ||\operatorname{grad}^* x|| = 0.$ $\implies x \in \operatorname{ker}(\operatorname{curl}) \text{ and } x \in \operatorname{ker}(\operatorname{grad}^*)$ $\implies x \in \operatorname{ker}(\operatorname{grad}^*) \cap \operatorname{ker}(\operatorname{curl}) \quad \checkmark$

Flows are Perpendicular

We can now find:

- G Gradient part
- C Curl flow
- H Harmonic Flow

We'll see that:

- G, C, and H are perpendicular
- $G + C + H = \overline{Y}$

Overview by Example

Note: each row sums to the corresponding edge value!

Overview (Gradient)

Notice:

• It's a directed acyclic graph (no flows)

Overview (Curl Flow)

Notice:

- Only the edges in a triangle have a nonzero-values
- All edges in this triangle have the same value

Overview (Harmonic Flow)

Notice:

• The edges in the non-local loop dominate

Why the Components are Orthogonal (1) Why G is orthogonal to C and H

$$a \in \operatorname{im}(\operatorname{grad})^{\perp} \iff \langle \operatorname{grad}(f), a \rangle = 0 \quad \forall f$$
$$\iff \langle f, \operatorname{grad}^* a \rangle = 0 \quad \forall f$$
$$\iff \operatorname{grad}^* a = \operatorname{div}(a) = 0$$
$$\iff a \text{ is a flow} \quad \checkmark$$

Since C and H are flows, then: $C, H \perp G$.

Why the Components are Orthogonal (1) Why G is orthogonal to C and H

$$a \in \operatorname{im}(\operatorname{grad})^{\perp} \iff \langle \operatorname{grad}(f), a \rangle = 0 \quad \forall f$$
$$\iff \langle f, \operatorname{grad}^* a \rangle = 0 \quad \forall f$$
$$\iff \operatorname{grad}^* a = \operatorname{div}(a) = 0$$
$$\iff a \text{ is a flow} \quad \checkmark$$

Since C and H are flows, then: $C, H \perp G$.

(2) Why C is orthogonal to H

$$a \in \operatorname{im}(\operatorname{curl}^*)^{\perp} \iff \langle \operatorname{curl}^* A, a \rangle = 0 \quad \forall A \in \operatorname{im}(\operatorname{curl}^*)^{\perp}$$
$$\iff \langle A, \operatorname{curl}(a) \rangle = 0 \quad \forall A$$
$$\iff \operatorname{curl}(a) = 0$$
$$\iff a \text{ is curl-free} \quad \checkmark$$

Since *H* is curl-free, then $H \perp G$.

Real Data - Revisited

For each flow $F \in \{G, C, H\}$, compute $\left(\frac{||F||_{2,w}}{||\check{Y}||_{2,w}}\right)^2$

	Gradient	Curl Flow	Harmonic Flow
Tennis	0.36	0.64	0.001
Golf	0.63	0.37	0
Chess	0.45	0.04	0.51

Observations:

- Rankability: same as before
- Golf: no harmonic flow because all triangles filled in
- Tennis: also low harmonic flow

Comparing to a Random Baseline

Using actual data:

	Gradient	Curl Flow	Harmonic Flow
Tennis	0.36	0.64	0.001
Golf	0.63	0.37	0
Chess	0.45	0.04	0.51

After randomizing edges and edge values (preserving sparsity):

	Gradient	Curl Flow	Harmonic Flow
Tennis	0.21	0.58	0.21
Golf	0.06	0.94	0.0
Chess	0.40	0.000035	0.60

Observations:

• Randomized chess data had high gradient

Acknowledgements

- Ideas drawn from *Statistical ranking and combinatorial Hodge theory* by Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye
- Prof. De Silva for explanations and ideas for new directions

